
FROM QUESTIONS TO QUERIES

From Questions to Queries

J. Hvorecký1 and M. Drlík2
1 College of Management, Department of Information Technologies, Bratislava, Slovakia

2 Constantine the Philosopher University in Nitra, Department of Informatics, Nitra, Slovakia

Abstract—The extension of (Internet) databases forces
everyone to become more familiar with techniques of data
storage and retrieval because users’ success often depends
on their ability to pose right questions and to be able to
interpret their answers. University programs pay more
attention to developing database programming skills than to
data exploitation skills. To educate our students to become
“database users”, the authors intensively exploit supportive
tools simplifying the production of database elements as
tables, queries, forms, reports, web pages, and macros.
Videosequences demonstrating “standard operations” for
completing them have been prepared to enhance out-of-
classroom learning. The use of SQL and other professional
tools is reduced to the cases when the wizards are unable to
generate the intended construct.

Index Terms—data management, human-computer
interaction with database systems.

I. INTRODUCTION
The extension of databases forces everyone to become

familiar with techniques of data storage and retrieval. For
example, a query forms a bridge between posing a
question formulated by a human and getting an answer to
it from a database engine. As all potential questions of
future users can never be known in advance – and
therefore cannot be programmed ahead – the success of
the database application often depends on users’ readiness
to see the interrelations between “two banks of the bridge”
and their ability to build them. We often witness
inefficient exploitations of the data resources because their
users are:

- Unable to pose complex questions;
- Incompetent to interpret the response.

A part of the problem is caused by inadequate

education. Universities concentrate on preparation of
developers, but not of users. Their study programs pay
more attention to developing programming skills than to
data exploitation skills. Authors lack Database
Management courses asking “meta-questions” like:

- Can the question X be solved based on the existing
content of the database?

- What has to be added to the database in order to make
it capable of gaining a solution to the problem X?

- Can you formulate another problem which cannot be
solved based on present data?

The authors believe that the ability to react to them

would substantially help in education of future users as
they would become aware of risks of data incompleteness,

incompatibility and inconsistency. Relevant courses do
not need Relational Algebra or Object-Oriented Database
Design. They should rather demonstrate practicality of
databases, the importance of data structuring, principles of
SQL-like searching mechanisms, and the importance of
user-friendly communication.

The authors designed a Database Management course
that incorporates the above intentions. The course is based
on MS Access and intensively exploits its “wizards” –
supportive tools simplifying the production of database
elements as tables, queries, forms, reports, web pages, and
macros. In addition to that, wizards in combination with
another set of tools – design views – visualize the
structure of the elements and facilitate students’
comprehension. The time saved due to faster production
can be efficiently used for explaining the role of primary
and foreign keys, indexes, and principles of data integrity.

The use of SQL and other professional tools is reduced
to the cases when the wizards are unable to generate our
intended construct. Similar (counter) examples have a
high pedagogical value as they show that not all problems
can be solved using “amateur approaches” and make a
clear distinction between user-oriented courses and
professional ones. They also indirectly show to the future
users they role in the database development: The users
have to know what they want from the databases whilst
professionals have to know how to implement their
desires.

The database developers can speak long about low-
qualified and ignorant (future) users unable to express
their desires properly and blaming them later for not
implementing their unspoken or wrongly expressed
requests. For that reason, the course ends with student
projects – complete, simple and user-friendly database
applications. The students learn about the complexity of
the process and the necessity to specify all of their
expectations in its early stages.

In our paper we exemplify our teaching methodology
using typical problems solved by our students. Its aim is to
point to the fact that education of qualified database users
– potential “translators” between business community and
software developers – has its specifics. It requires a
combined background; partially from business and
management and partially from computer science. The
application of wizards helps us to reduce the number of
prerequisites and theoretical concepts not-substantial for
our students and still to guarantee a relatively high
students’ competence in databases.

In a separate section we discuss specifics of the
distance-learning methodology. To support it, the teaching
manuals and the sets of solved and unsolved problems
originally designed and created for our on-ground classes
have been enriched by sample databases and short video

 www.i-jet.org 13

FROM QUESTIONS TO QUERIES

sequences demonstrating “how to perform standard
operations”. All of them are now successfully applied in
our online classes, too. Step by step, the videos show what
must be performed for completing the problem solution.
Their aim is to build the skills that are critical for
transforming questions posed by humans to the notation
accepted by the machine. The students can consult them in
addition to their regular communication with instructors.

USER-FRIENDLY DATABASE DESIGN
AND DEVELOPMENT

II.

A. Tables
The fundaments of databases are formed of entities and

relationships. Separate entities are stored in separate
tables. As the relationships between them are usually
complex and not always correspond to our intuitive
concepts, forming entity-relationship diagrams (E-R
diagrams) often precedes table design. In our opinion, this
approach is not a fortunate one as the novices have no idea
about the role of tables and of the reasons why they must
be interconnected by relationships. The proper design
requires a high level of abstraction which can hardly be
achieved without seeing a sufficient number of concrete
examples. For that reasons our course starts with forming
one-table databases. Databases with several interrelated
tables are introduced a few weeks later.

Access tables can be created using several simplified
methods.

- The simplest one uses the databases templates. We do
not use it as we expect our students to understand how the
entity is structured and why.

- The next method is based on typing values into
Datasheet view. We do not use it neither as we want our
students to learn as much as possible about metadata. Our
experience showed that once concrete values of attributes
are entered into the table, the students prefer them to a
general discussion about all potential values. Often, the
data types of database objects do not correspond to our
naïve types. For example, telephone numbers are not of
any numerical data type – they are texts. If a telephone
number beginning with leading zeroes or a “+” symbol is
typed, the numerical data types automatically delete them.
As country codes begin with them, crucial information is
lost.

- Our experience resulted in preferring Design view.
This form of wizard has two advantages. First, the student
starts with specifying attributes and their metadata, not
their values. Secondly, their typing takes much shorted
time than using SQL Data Definition Language.

Let us specify the table Books with six attributes ISBN,

Title, Author Name and Surname, Pages, and Price.
Compare two following versions of the same definition –
one in SQL, the other in Access Design View:

CREATE TABLE Books (
 ISBN CHAR (15)

 NOT NULL UNIQUE,
TITLE CHAR (60) NOT NULL,

 AUTHOR NAME CHARS (15),
 AUTHOR SURNAME CHAR (30),

 PAGES INTEGER NOT NULL,
 PRICE NUMBER (8,2) NOT NULL,
 PRIMARY KEY (ISBN)
);

Advantages of Design View are obvious: Its parameters

are better organized and can be accompanied by
comments. The restrictions to each attribute can be
specified to a high level of detail without knowing the
DDL keywords. Our discussion on them can concentrate
on their meta-properties like: Is the attribute always
required? What are its presumed values? What data type is
therefore the most appropriate and why? Such discussions
are crucial elements of our teaching methodology. During
them, our students discover the importance of data types
and differences between them by themselves. For
example: Why has ISBN to be a Text, not a Number?

Their gained experience helps them later in
understanding their role in cooperative database design
and development. For that reason, many assignments have
the open-end form like: You are a police officer. Your
superior asks you to prepare a database of wanted persons.
What data should the database contain and why? Prepare
its table(s) in MS Access.

The outputs differ and can therefore be a subject of
discussions among the authors of different versions during
next classes.

As the data types can be selected from a menu, the most
active students investigate the unknown ones by
themselves. For that reason, one can often find
photographs or internet links among their data. This is
another advantage of wizards: they offer more options
than teachers can usually introduce during their limited
lecture time. As such, they also offer room for
investigations, experiments and self-education.

Our students are also invited to discuss problems of
data quality. They should understand why data must be
complete, accurate and up-to-date – and learn how to
guarantee it. The most problems solved here belong to
domain integrity and entity integrity. The latter is
achieved by introducing restrictions on several attributes
simultaneously:

Figure 1. Table Design View makes it possible to specify
attributes and their metadata

 14 iJET – Vol. 2, No. 4, 2007

FROM QUESTIONS TO QUERIES

- Your company sells airline tickets. Each record about
a purchase must contain the port of departure, port of
arrival, date of flight, the flight number and the number of
adults and children. Each child must be accompanied by at
least one adult. Include this restriction into your database.

- A transportation company asks you to prepare its
database of truck routes. Each route record will contain
the driver’s name, destination, date of departure and
presumed date of return, as well as information on the
weight of the load – separately in two columns for the way
there and back. As you can guess, the date of return is
always greater or equals to the date of departure. The
truck cannot travel to the both directions empty. Protect
your data against wrong inputs of this sort.

Similar restrictions lead to rather complex logical
expressions with several equalities and inequalities. Using
Expression Builder is a method of speeding up the
process. As it contains the list of attributes of the given
table, the process goes faster and the probability of typing
errors decreases. This is one of its main advantages and
makes its usage very popular among our students.

B.

C.

Relationships
Basics of relationships between tables can also be

explained using a wizard. Let us presume that we decide
including Genre of the book into our above table. The
number of its options is limited: History, Fiction, Non-
fiction, etc. The students quickly grasp that entering them
is boring and not a reliable method due to typing errors.
They welcome the opportunity to choose them from a
menu.

Lookup Wizard offers a way. First, a simple, one-
column table has to be created. As the new table will
contain nothing more than the list of all genres - and they
are different – it is the only candidate for the primary key.
Later, this table can be interconnected to an attribute as a
set of its proposed values using Lookup Wizard. The
wizard creates a weak relationship between the specified
attributes of these tables.

It is very important to point the students’ attention to
the fact that weak connections do not propose a sufficient
protection against typing wrong values. The menu created
by the wizard allows introducing the input values by
selecting one from the menu but does not prohibit typing
other (incorrect) ones. To achieve this, the relationship
must be changed into a strong one. Since it is established,
referential integrity is guaranteed. In this stage we do not
talk about normalization yet. We only discuss the
relationship between the values of a pair of attributes in
two relating tables. The relationship locks together the
primary key with its related foreign key. Nevertheless, our
explanation is an intentional introduction to stronger
partnerships required within sets of normalized tables.

Queries
Our main aim in this section is training our students to

become capable translating questions in their minds into
their equivalents in a query language. So, our assignments
contain only questions in a natural language and never
mention “tables, attributes or relationships” in their
database-oriented meaning. Our students are supposed to
build the relationships between them and the natural-
language questions on their own. Query Wizard and
Query Design View are very helpful tools for similar

“translations” and simplify the query creation. The
students do not need to concentrate too much on its syntax
and can focus on semantics. As everyone likely agrees,
semantics must be the leading factor in the process.

Query Wizard speeds us building the basic structure of
SELECT queries by picking up the needed attributes from
a two-level menu. At the first level, the user specifies the
table or query; at the next level, he/she selects the
attributes. The process allows combining data from all
tables and (earlier formed) queries. If the tables/queries
are connected by a relationship, a JOIN query is
automatically generated. The students are no supposed to
type these elements. The probability of making typing
errors is negligible. The student can better concentrate on
the proper choice of the data sets.

We also stress that the outputs of Query Wizard are not
always identical with user’s intention. If we for example
select data from two tables not connected by a
relationship, Query Wizard generates their Cartesian
product. Even if they are connected, the records are
combined by using the inner join. Naturally, the user
might have a different combination in his/her mind. We
introduce specific problems that visualize these (and
similar problems). Their main purpose is to visualize a
wide variety of combinations of database elements and
risks of misunderstanding caused by them. Our main aim
is to indicate that database specialists should be invited for
creation of very complex queries.

Query Wizard outputs are simple SELECT – FROM or
aggregate SELECT – FROM – GROUP BY queries. Their
SELECT part consists of all selected attributes; their
FROM part contains the chosen table(s), possibly joined
on identical values of their relating attributes.
Unfortunately, the branch for creating aggregate queries
opens only when at least one of the chosen attributes have
a numerical data type. This complicates creation of
queries that count the number of non-numerical elements
(How many books are in the list?) Also, it does not allow
introducing the DISTINCT keyword impeding other set of
frequent questions (How many different books are in the
list?) For that reason, Query Wizard must be used for very
simple question only. All others require its combination
with Design View and/or SQL.

In the language of laymen this results into two-step
processes: Using Query Wizard we select needed
columns, using Query Design View (or SQL) we select
requested rows.

This principle fits well with a picture of SQL as a
language operating separately over the table’s columns
and separately over its rows.

Let us presume that we ask: Did John Doe publish a
book with more than three hundred pages? In the first step
we have to decide which attributes (columns) play the role
in our decision making. The complete response only
requires the attributes Author and Pages.

On the other hand, we expect our students to generate
responses having the “full logic for a common-sense
database user”. Taking this into our account, Title is
another reasonable candidate. Our experience shows that
the majority of our students make such identification. In
fact, Title must only participate in this question: Which
books of John Doe have more than three hundred pages?
We stress to our students that these two questions are
different and the interpretation of the first one depends on

 www.i-jet.org 15

FROM QUESTIONS TO QUERIES

the content. When we are interested in the sheer fact “Yes
or No”, two attributes are sufficient. If we are interested in
the books themselves, three are needed.

Notice that the interpretation of the meaning of the
question: “Did John Doe publish a book with more than
three hundred pages?” is individual. Some people
understand it in its straight meaning, others in the
extended one. Different interpretations of the same
sentence are one of the most common sources of
misunderstanding between users and developers. We point
to the problem from very first days of our classes.

Similar problems appear with interpretations of results.
When the query is formulated (using Query Design View)
as below, it can generate an empty set of data. Its meaning
is “No”.

The teacher must explain that the result can be

displayed in a more legible form e.g. by counting the
number of records in the query (named 300 Pages):

SELECT COUNT(*) AS [Number of Books with at
least 300 pages] FROM [300 pages];

Now the result will be 0, 1, 2, etc. depending on the

factual number of the books with expected property.
Interpreting zero as “no book of the expected size” is
much more probable than giving the same meaning to the
empty data set.

There are many opportunities for similar
misunderstandings. For example, there is a difference
between interpreting “AND” and “OR” in our common
life and in computer languages. In Query Design View,
the conditions connected by AND are in the same row,
whilst those connected by OR are in different rows.

Again, the best method of pointing to this problem is
using formulations of problems in a natural language. We
train our students to distinguish among these subtle
differences by series of questions like:

Whose first name starts with “J”?
Whose surname starts with “J”?
Whose first name and surname starts with “J”?
Whose first name or surname starts with “J”?

It is rather surprising for our students that the questions
produce very different solutions. As forming their
solutions is quite simple, the following question often
appears: How to formulate a query which produces all
authors with the same first letter in their name and
surname? They are rather amazed that the problem is
much more difficult and requires applying the LEFT
function to the both attributes. Naturally, when they
express their desire to learn it, we show them the way.

Similar students’ demands are good entrances to SQL.
Solving the problem in Query Design View is easy – but it
strongly depends on MS Access specifics. As our desire is
teaching concepts not tools, we always prefer more
general ones. (It can be easily shown that not all problems
are solvable using Query Wizard.)

Students are often surprised how small differences in
the text formulation lead to substantially different
solutions. We try to raise their curiosity by using
appropriate problems. For example, the question: “How
many pages does the longest book have?” results in the
following simple SQL query:

SELECT MAX(Pages) FROM Books;

Its extended interpretation (also asking: Which book is

it?) uses the above statement as its subquery:

SELECT Author, Title, Pages
FROM Books
WHERE Pages = (SELECT MAX(Pages) FROM
 Books);

The above examples indicate that we also introduce

SQL in our courses. Without it, the students might face
problems to build up more complex queries. We advise
them to solve the task using its “narrowed” interpretation
(only producing the number of pages). The problem is
easily solvable by Query Wizard and Design View. Let us
presume that its result is 746. In the next step, the problem
is transformed into: Which book has 746 pages? Again,
Query Wizard and Design View suffice for solving it. Its
result is:

SELECT Author, Title, Pages
FROM Books
WHERE Pages = 746;

Then, we ask the students what will happen when a

book with 820 pages appears: “Will the query generate the
new book?” Evidently, not. It will again generate the one
with 746 pages. So, we need a query which does not
depend on any combination of the books in our database.
The best students easily conclude that replacing the
number by the query that calculates it produces the right
answer under any circumstances. We exploit their
discovery and take a broad view to it as to a general
method for creating subqueries.

Students frequently ask about differences between
available tools. First, we conclude that there is no
response covering all potential cases. Nevertheless, the
guideline can look as follows:

Figure 2. Query Design View

 16 iJET – Vol. 2, No. 4, 2007

FROM QUESTIONS TO QUERIES

1. Simple conditions (comparisons to an attribute value)
can be written directly into the particular column in
Design View.

2. SQL is more appropriate for forming more complex
conditions e.g. those combining several attributes.

3. In most cases, the SQL text is the final one.
Nevertheless, switching between SQL and Design View
sometimes leads to a faster query development. So, even if
the text is already in SQL but the developer sees an
opportunity to enter some conditions in Design View,
he/she should not hesitate doing so.

The situation can be exemplified by the problem:

“Name the authors publishing at least three books”. As we
teach our students to solve the problem in a stepwise
manner, they often come to the following query
containing GROUP BY but not HAVING yet:

SELECT [Author Surname], [Author Name],
COUNT(Title) AS [# of Books]
FROM Books
GROUP BY [Author Surname], [Author Name];

This command is a partial solution of the problem as it

shows all authors with their corresponding numbers of the
books. The restriction has to bind the last column – the
number of books. Switching to Design View and typing
the condition solves the problem entirely (Figure 3.).
Switching back to SQL reveals its equivalent:

SELECT [Author Surname], [Author Name],
 COUNT(Title) AS [# of Books]
FROM Books
GROUP BY [Author Surname], [Author Name]
HAVING COUNT(Title)>=3;

There are many interesting problems connected to the
semi-automated creation of queries by end-users and to

the relationships between questions (in a natural language)
and their equivalents (queries in SQL-like language).

Some research has been done on relationship between
Query-By-Example languages and SQL (e.g. [1] and [2])
but we could not find any that applies the principle for
teaching introductory database courses. One of the authors
prepares his doctoral thesis aimed to enhance high-school
and university database courses in the particular direction.

D.

III.

Forms
Wizards are tools for common users, not for

professionals. Even if they certainly use them as well, they
are still capable to achieve their aims by standard tools.
For that reason, one can claim that database developers
spend their time and money for the wizard development
because they believe that with their number and quality
will also bring greater numbers of layman- or low-
qualified-users.

In general, their conclusion is correct. On the other
hand, this positive experience leads to creating more
sophisticated wizard tools – so complex that the opposite
effect appears: “Too much cooks spoil the cake”. One can
witness such effects in the newest version of Access –
version 2007. In the previous one, Form Wizard began
with offering options: its user could decide whether he/she
would start generating a form starting with an isolated
table or with several ones. If the tables were related, their
relationships were automatically included and resulted
into forms with subforms.

The newest version does not propose any choice. When
a table relates to other ones, all of them are automatically
included. For a layman, creating a form without a subform
becomes practically impossible. One has to create the
more complex one – and then delete the unwanted parts.
This can hardly be presumed as a user-friendly approach.

In addition to that, all controls in the wizard-generated
form are interconnected by hidden links that prohibit
moving a single control. The move of one box results in
moving all so their relative positions remain same. The
users can personalize their forms much harder than before.

As a result, instead of our intensive use of Form Wizard
in the past, we now recommend our students to build their
forms manually.

Figure 3. Example of query created by combination of Query
Design View and SQL View

SUPPORTING DISTANCE LEARNING
A big portion of our students are studying at distance.

For them, having additional support is a precondition for
their success. It consists of three compatible sets of
materials:

- Textbook: Our approach has been implemented in the
textbook [3]. It not only covers the content of the course
but also offers various strategies for building the database
components as input masks, validation rules, complex
expressions etc. It also explains differences between
various types of queries, approaches to normalization, and
others. The book is trying to keep the balance between
theory and practice. Its writing style is quite simple
(“newspaper-like”) but sticks as much as possible to the
level of exactness necessary for creating functioning
database application. We believe that our text has to be
readable and fun – one of our unwritten objectives is to
make our readers to enjoy databases. So, only the most
important details are in the book. We expect our students

 www.i-jet.org 17

FROM QUESTIONS TO QUERIES

to become able to consult their application manuals and to
use on-line help service effectively.

- Sample databases: The book is accompanied by a CD.
To simplify the readers’ orientation, its folders are
organized by chapters. Text of each chapter is
accompanied by dozens of sample databases serving for
two main purposes. The first set exemplifies the concepts
explained in the particular chapter. By opening it, the user
can confront the idea and its implementation in a very
detailed manner. The other group relate to assignments.
Every of these databases appear in pairs: “empty” and
“solved”. The “empty” database contains all data
necessary for commencing the solution in accordance to
the assignment. The “solved” one shows a solution – not
necessarily identical with that found by the student. When
the student is trapped, he/she can confront his/her
approach and find a way out.

Several of the databases appear recurrently throughout
the book. In a stepwise manner, they demonstrate how the
idea can be adapted, extended etc. It takes the reader
forward to comprehend that the process can be performed
at various levels of precision and complexity. The CD
contains updated versions at each stage that we re-use
them so that the whole class can start from the same point.

- Video sequences: Many operations necessary for
design and development require manual skills. In classes,
teachers can demonstrate them in order to help their
students to perform them in the simplest and fastest
manner. This function of teacher is replaced by video
sequences in Flash [4]. By watching them, our distance-
learning students can easily comprehend what should be
done to complete a particular activity and how. As they
can stop the video at any moment, they can combine their
own hands-on activity with the presentation. Macromedia
Captivate [5] is used for capturing the activity shown in
the video. In the next step, the captured sequence is edited
and a enriched by comments. The completed sequences
are converted into the swf format. Due to that, they can be
downloaded by any browser without a necessity to
download other program(s).

Regular and high-quality communication between
instructors and their students as well as among the
students themselves is another sine qua non condition
necessary for achieving adequate educational results. Its
large part simulates real-life situations appearing during
database development. The students review their partners’
projects, express their opinion and expect the authors to
defend their proposals – or to modify them in accordance
to their suggestions.

During the discussion, they are not requested to use
exact database terminology. Expressing the ideas in the
form and style that is comprehensible by the others is
sufficient. This also simulates the situation our students
may face in their future. They are supposed to be highly
qualified users – not programmers or developers. As such
they should be capable to evaluate proposed half-finished
products, assess the degree to which it satisfies their
expectations and propose their improvements. The ability
to express one’s opinion in a legible manner is for such
individuals much more important qualification than
terminology itself.

IV. CONCLUSIONS
The students taking our courses are not computer

scientist. They are future managers or teachers i.e. typical
database users from application fields distant from
Computer Science. Database Management does not
belong among their basic subjects. The course has
therefore to be short and efficient.

As you could see above, we have given careful thought
to our struggling learner and not allowed the logic of the
subject to dictate the order and approach. We have
avoided introducing theory first. If anything, we have
taken an inductive approach, using hands-on examples
before explaining underlying theory. One can call it the
“concrete-to-abstract” method. As the result, our course
has a good balance between the needs of the learner and
the nature of the subject. In many respects it is unique
because of its mix of theory and hands-on, its easy style
and its rigor, its "real world" examples to illustrate
abstract theory.

We have deliberately adopted a lighter style and hope
that we have not allowed ourselves to wander too far from
the subject too often. Some people may feel that the
approach is inappropriate for such a serious topic. It is true
– one should not let an easy read lull the student into
believing that databases are easy stuff! We opted for such
a style because our unwritten aim is to get readers to enjoy
databases and convince them that quality databases cannot
be built without cooperation with specialists, good
judgment for details and a sense for other partner’s need.

As a result, our speeches during the course, textbook
and accompanying materials balance between the needs of
the learner and the nature of the subject. We have made an
attempt to make our course interesting and accessible. We
are not out to make experts, we want to make converts!
(People who can immediately create good applications,
but who also understand that their future study can take
them even farther.) In some cases, we evidently
succeeded. Some students were so fascinated by the
subject that they change their professional orientation and
become database developers.

The course brings benefits also to those who are not so
widely involved. As new and new database-oriented
applications appear, the need for users familiar with
database structure and design grows. Those who are
capable of serving as “translators” between customers and
developers can easily find their job. There is a huge
demand for people with similar qualities.

So we believe that the concept can be applicable not
only in our local courses but in a much larger circle.

REFERENCES
[1] Özsoyoglu, G. and Wang, H. “Example-Based Graphical Database

Query Languages”. Computer 26, 5, pp. 25-38, May. 1993.
[2] Thomas, J. and Gould, J. “A Psychological Study of Query by

Example”. National Computer Conference. AFIPS Anaheim, CA,
44, 1975, 439-445 pp.

[3] Hvorecký, J. and Drlík, M. Understanding Databases. Vysoká
škola manažmentu, Bratislava (manuscript, Slovak language).

[4] Rebenschied, S. Macromedia Flash 8 Professional, 352 pp. ISBN:
978-80-251-1696-8

[5] Huettner, B. Macromedia Captivate: The Definitive Guide
(Wordware Applications Library). Wordware Publishing, Inc.,
2005, 350 pp. ISBN-10: 1556224222.

 18 iJET – Vol. 2, No. 4, 2007

FROM QUESTIONS TO QUERIES

AUTHORS
Manuscript received 30 October 2007. This work was supported in

part by the European Social Fund under Grant 11230100465. J. Hvorecký is with the Department of Information
Technologies, College of Management, Bratislava,
Slovakia (e-mail: jhvorecky@vsm.sk).

Published as submitted by the author(s).

M. Drlík., is with the Department of Informatics,
Faculty of Natural Sciences, Constantine the Philosopher
University in Nitra, Nitra, Slovakia (e-mail:
mdrlik@ukf.sk).

Paper presented at ICL2007 conference, Villach, Austria, September

2007

 www.i-jet.org 19

