
PAPER
TEACHING SOFTWARE ENGINEERING WITH GAMIFICATION ELEMENTS

Teaching Software Engineering with
Gamification Elements

https://doi.org/10.3991/ijac.v11i1.9169

Sigrid Schefer-Wenzl1 and Igor Miladinovic1
1 University of Applied Sciences, Computer Science and Digital Communications, Vienna, Austria

Abstract—Students of software engineering courses in
higher education often experience a lack of motivation,
partly caused by traditional teaching methods. In our study
program we introduced a novel blended learning concept
with threefold gamification elements for teaching software
engineering. In this paper we present the teaching method
mix with particular focus on the integration of three
gamification elements to increase students’ engagement.

Index Terms—experiential learning, gamification, software
engineering education.

I. INTRODUCTION
Learning is known to be most effective when it is

active, experiential, situated, problem-based, and provides
immediate feedback [4]. These are properties that
traditional software engineering courses in higher
education often do not meet. A typical software
engineering course consists of the following two elements:
a lecture where concepts and theories are taught as well as
small programming projects enabling students to apply
this knowledge. However, lectures only allow passive
learning and projects are very constrained, structured and
well-defined, which does not prepare students adequately
for their future jobs [11]. Moreover, using this setting,
teachers of software engineering courses are often
confronted with students’ lack of motivation to
continuously practice their programming skills (see, e.g.,
[5, 8]), which leads to high dropout rates as well as high
failure rates in software engineering courses.

One promising approach to increase students’
motivation is the introduction of gamification elements
into software engineering courses. Gamification is defined
as the application of game design elements to non-game
activities with the goal to increase user experience and
engagement [16]. Using gamification in different
educational contexts is known to be one way to enhance
learner motivation and to improve learning outcomes by
capturing the interest of learners and inspiring them to
continue learning [9, 10].

Our University of Applied Sciences Campus Vienna
offers a Bachelor program in Computer Science and
Digital Communications, with key skills focusing on a
solid understanding of software development as well as
comprehension of modern software engineering
principles. One of the key lectures for those skills is
“Software Engineering” in the third semester. Until now
this course was taught using traditional methods, such as
frontal lecture and home assignments. These methods
were not able to support diverse entry levels of students
frequently resulting in failing to achieve the learning
objectives for students with lower entry levels. To address

this issue we developed a new threefold gaming approach
for teaching software engineering, supported by different
gamification elements. In this paper we present this
concept and discuss impacts of gamification on the
achievement of learning objectives.

The remainder of this paper is structured as follows.
Section II presents related work on gamification in
software engineering courses. In Section III, we introduce
our course design for a Bachelor-level course. In Section
IV, we focus on the gamification concepts we employed
in our course. Finally, Section V concludes this paper.

II. RELATED WORK
In recent years, several approaches have been proposed

to motivate students and facilitate students’ learning in the
area of software development (see, e.g. [1, 2, 10]), some
of them by using different kinds of game-based elements.
Many authors discussing gamified software engineering
courses state that students report improved content
comprehension, retention and recap (see, e.g. [3]). This is
mainly due to the practical application of the taught
concepts in a game-based course.

Combefis et al. [8] analyzed several game-based online
programming platforms. Amongst others they conclude
that successful educational game platforms need to
provide feedback and assessment, game elements need to
be fun, and collaborative games and contests raise
participation rates. According to Nah et al. [6], game
design elements that are often used in an educational or
learning context are experience points, levels/stages,
badges, leaderboards, prizes/rewards, progress bars,
storyline, and feedback.

Applying gamification to educational contexts has
produced several promising results. However, a game-
based approach is also associated with several risks. For
example, Berkling and Thomas [5] introduced a
gamification platform to teach a software engineering
course. However, the results showed that students found
the gamified environment as not being helpful, as they
wanted to focus on relevant material for the exam.

Existing research in the field of applying gamification
elements in software engineering education is still
preliminary. More research on defining a systematic
approach to design gamified learning activities, on relating
learning goals with game-related methods as well as on
evaluating the impact of gamification in software
engineering education is needed.

48 http://www.i-jac.org

PAPER
TEACHING SOFTWARE ENGINEERING WITH GAMIFICATION ELEMENTS

III. COURSE DESIGN

A. Learning Objectives
We defined the following learning outcomes for our

“Software Engineering” course:
• Understand and apply an effective software

engineering process, based on knowledge of
widely used software process models.

• Employ team working skills including organized
planning, time management and inter-group
negotiation.

• Capture, document and analyze requirements.
• Translate a requirements specification into an

implementable design, following a structured
process.

• Make effective usage of software design
strategies.

• Design a testing strategy for a software system,
employing techniques such as unit testing, test
driven development and functional testing.

• Evaluate the final projects by checking
compliance with the requirements, and analyze
the design and implementation.

B. Course overview
The course consists of a lecture part and a tutorial part.

The lecture part comprises the following four modules:
(1) Software engineering activities,
(2) Unified Modelling Language,
(3) process models, and
(4) invited lectures.
The software engineering activities module provides an

overview of the main tasks of software engineering, such
as requirements engineering, high level design, low level
design, development and testing. The second module
introduces Unified Modelling Language (UML) [12],
enabling the students to graphically visualize the design
of their future software projects. In the third part,
different kinds of process models that structure the
software development process are investigated and
applied on smaller examples. The lecture part is
completed with short lectures of four invited experts from
several partner companies, who are involved in the
software engineering process in their daily business.

During the lecture there are two example projects to
illustrate how the learning content can be applied in
practice. The first project is provided and presented by
the lecturers demonstrating all aspects necessary for the
implementation of the students’ projects. The second
project is elaborated by the students during the lecture to
apply what they have learned on a simple project.

In the tutorial part, students work on a larger industry-
like software gaming project, where they go through all
software engineering phases according to a particular
process model. Students are supported by the lecturers via
regular coaching meetings.

C. Applied Teaching Methods
Figure 1 lists the applied methods for both, lecture and

tutorial part. In the lecture we used blended learning to
address different entry levels and learning patterns. The
students prepare themselves for each lecture module with
the provided learning material and generate control
questions and corresponding answers in advance. The
lecturers evaluate these inputs and select the most
important questions to be discussed in the class. In-class
sessions start with a recap of the learning content for this
module, followed by a discussion on the selected
questions. Afterwards, the obtained knowledge is applied
on exercises in the context of the students’ lecture
projects.

Figure 1. Method mix

In the tutorial part experiential learning via simulation
of a real gaming software engineering project takes place.
The whole tutorial is accompanied by regular lecturer
coaching. The project starts with a Hackathon [13, 14]
event, which is a six hours event where the students are
brainstorming, discussing and evaluating their projects
ideas. After the individual brainstorming phase there is a
voting for each project idea by all students. One third of
the ideas – those with the highest voting – are selected for
the implementation. Each implementation is done in a
group of three students with predefined roles:
programmer, coordinator and designer. These roles have
specified tasks and should reflect the roles of a real
software project:

• The coordinator plans and documents the project,
schedules regular meetings, keeps track of
important decisions, talks with the customer, i.e.
the lecturers, observes the whole development
process and checks that all deliverables are
provided in time.

• The designer defines the software architecture
and the graphical user interface.

• The programmer is responsible for implementing
and testing the project.

Students have to document their project progress in a
project diary where they keep record of their decisions,

iJAC ‒ Volume 11, Issue 1, 2018 49

PAPER
TEACHING SOFTWARE ENGINEERING WITH GAMIFICATION ELEMENTS

agreements, findings, problems and successes. These
project diary blogs are readable for all course members.
Each course member can comment on the blog entries and
give suggestions for improvements. Constructive
comments are awarded with bonus points.

The final projects are evaluated in a peer assessment
manner, where the compliance with the requirements
specification and the high-level design is checked.

IV. THREEFOLD GAMIFICATION
To foster the motivation of students even more, we

introduced three gamification concepts in our lecture: a
challenge, a level based progress tracking and experiential
learning through own game projects.

Figure 2. Team challenge

A. Challenge
The challenge is organized as a kind of competition

between the development teams, where they compete for
common resources, which are points for the grading in our
lecture. The challenge applies for the requirements
engineering and the high level design exercises of the
lecture. Each group specifies these two documents for a
given project (same for all the groups) and shares these
specifications with a certain number of other groups (n).
These groups challenge shared documentations and look
for weaknesses in them. If no weaknesses are found, the
group which owns the documents gets one grading point.
Otherwise, the group which challenged the document gets
that point. Figure 2 illustrates this process.

The total number of grading points which are
achievable by this challenge can be adjusted by the
number of groups which challenge the documentation. For
each document – and there are two in our course – the
maximum number of points is 2n-2.

B. Gaming Levels
The second gamification concept is based on

knowledge levels according to Bloom’s Taxonomy [15].
For our course we adapted the six original categories into
four levels, as shown in Figure 3.

For each level we defined clear tasks and achievements
to accomplish. The first level is Remember and
Understand and the achievements are determined by a
written examination. The Applied level is driven by
lecture exercises deepening the theoretical knowledge and
by self-created questions and answers about the lecture
contents. The described challenge covers the Analyze and
Evaluate level. Finally, the design and implementation of
the own project in the tutorial part enable the students to
move to the Create level.

When the students obtain at least half of the possible
achievements from one level, they are promoted into the
next level. This promotion is a precondition for
achievements in the next level.

C. Experiential Learning
Simulating real-world projects is aimed to provide

students with the experience in order to unify the practical
understanding with the theoretical knowledge [10]. In our
course, students are supposed to learn by experiencing all
phases of a typical industry-like software project. They
create a project idea and follow it until successful
implementation. Therefore, students are likely to identify
themselves with their projects resulting in an increased
motivation. Applying the gamification concept here we
intend to foster student engagement even more.

Figure 3. Knowledge levels

During the Hackathon event, students have to propose
ideas for a project, which should be a gaming application.
The best ideas are selected for implementation as
described in Section III.C. Gaming applications have
several advantages: A game needs clearly defined rules
which constitute the requirements of the application. In
addition, in a game functionality, design and performance
are all important motivating the students not to neglect
one of them. Usually games also frequently need a local
database and cloud architecture which increases learning
effects.

V. CONCLUSION
Different studies show that gamification can increase

students’ engagement in higher education. We designed a
bachelor level software engineering course by combining
a method mix with threefold gamification elements,
challenge, gaming levels and experiential learning. With
this concept we gradually address all the knowledge levels
according to Bloom’s Taxonomy. In future research, we
will apply and evaluate this course concept in different
student settings.

REFERENCES
[1] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J.

Bennedsen, M. Devlin, and J. Paterson, “A survey of literature on
the teaching of introductory programming”, In: Working Group
Reports on ITiCSE on Innovation and Technology in Computer
Science Education, ITiCSE-WGR ’07, pp. 204–223, Dundee,
Scotland. ACM, 2007. https://doi.org/10.1145/1345443.1345441

[2] A. Vihavainen, J. Airaksinen, and C. Watson, “A systematic
review of approaches for teaching introductory programming and
their influence on success”, In: Proceedings of the Tenth Annual
Conference on International Computing Education Research,
ICER ’14, pp. 19–26, Glasgow, United Kingdom. ACM, 2014.
https://doi.org/10.1145/2632320.2632349

50 http://www.i-jac.org

PAPER
TEACHING SOFTWARE ENGINEERING WITH GAMIFICATION ELEMENTS

[3] P. G. F. Matsubara, C. L. Correa da Silva, “Game elements in a
software engineering study group: a case study”, In: Proceedings
of the 39th International Conference on Software Engineering:
Software Engineering and Education Track, ICSE-SEET '17, pp.
160-169, Buenos Aires, Argentina, IEEE Press, 2017.
https://doi.org/10.1109/ICSE-SEET.2017.8

[4] E. A. Boyle, T. M. Connolly, T. Hainey, “The role of psychology
in understanding the impact of computer games”, In:
Entertainment Computing, vol. 2, nr. 2, 69–74, 2011.
https://doi.org/10.1016/j.entcom.2010.12.002

[5] K. Berkling, C. Thomas, Gamification of a Software Engineering
Course and a detailed analysis of the factors that lead to it's
failure. In: Proc. Of the International Conference on Interactive
Collaborative Learning, pp. 525–530, Kazan, Russia, IEEE Press,
October 2013. https://doi.org/10.1109/ICL.2013.6644642

[6] F. F.-H. Nah, Q. Zeng, V. R. Telaprolu, A. P. Ayyappa, B.
Eschenbrenner, “Gamification of Education: A Review of
Literature”, In: Proc. of the International Conference on HCI in
Business, HCIB 2014, Heraklion, Crete, Greece, Lecture Notes in
Computer Science, vol 8527, Springer, pp. 401-409, June 2014.
https://doi.org/10.1007/978-3-319-07293-7_39

[7] D. J. Frailey, “The times, they are changing”, In: Software
Engineering Education and Training, pp.1-2, Klagenfurt, Austria,
2014. https://doi.org/10.1109/CSEET.2014.6816774

[8] S Combéfis, G. Beresnevicius, V. Dagiene, “Learning
Programming through Games and Contests: Overview,
Characterisation and Discussion”, In: International Olympiad in
Informatics, vol. 10, pp. 39–60. Vilnius, Lithuania, 2016.
https://doi.org/10.15388/ioi.2016.03

[9] G. Barata, S. Gama, J. Jorge, D. Goncalves, “Improving
Participation and Learning with Gamification”, In: Proc. of the 1st
International Conference on Gameful Design, Research, and
Applications, Toronto, Ontario, Canada, 2013.
https://doi.org/10.1145/2583008.2583010

[10] M. Kosa, M. Yilmaz, R. O’Connor, P. Clarke, “Software
Engineering Education and Games: A Systematic Literature
Review”, In: Journal of Universal Computer Science, vol. 22, no.
12, pp. 1558-1574, 2016.

[11] Souza, Mauricio R. et al., “A systematic mapping study on game-
related methods for software engineering education”, In:
Information and software technology, vol. 95, March 2018.
https://doi.org/10.1016/j.infsof.2017.09.014

[12] Object Management Group, “Unified Modeling Language (UML).
Version 2.5.1”. available at: https://www.omg.org/spec/
UML/2.5.1/, Dec. 2017.

[13] B. Rosell, S. Kumar, and J. Shepherd, “Unleashing innovation
through internal hackathons”, In: IEEE Innovations in Technology
Conference, pp. 1–8, May 2014. https://doi.org/10.1109/InnoTek.
2014.6877369

[14] E. H. Trainer, A. Kalyanasundaram, C. Chaihirunkarn, and J. D.
Herbsleb, “How to hackathon: Socio-technical tradeoffs in brief,
intensive collocation”, In: Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social
Computing, CSCW’16, pp. 1118–1130, New York, NY, USA,
2016. https://doi.org/10.1145/2818048.2819946

[15] B. S. Bloom, “Taxonomy of educational objectives, handbook I:
Cognitive domain.”, New York: David McKay, 1956.

[16] S. Deterding, D. Dixon, R. Khaled, L. Nacke, “From game design
elements to gamefulness: defining ‘gamification’”. In:
Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments, Tampere,
Finland, September 2011. https://doi.org/10.1145/2181037.
2181040

AUTHORS
Sigrid Schefer-Wenzl is a senior researcher and

lecturer at the University of Applied Sciences Campus
Vienna, Austria (e-mail: sigrid.schefer-wenzl@fh-
campuswien.ac.at).

Igor Miladinovic is head of the degree program
Information Technologies and Telecommunication at the
University of Applied Science Campus Vienna, Austria
(e-mail: igor.miladinovic@fh-campuswien.ac.at).

Manuscript received 15 March 2018.

Published as submitted by the author(s).

iJAC ‒ Volume 11, Issue 1, 2018 51

	iJAC – Vol. 11, No. 1, 2018
	Teaching Software Engineering with Gamification Elements

