
PAPER
PARALLEL AES ENCRYPTION ENGINE FOR MANY CORE PROCESSOR ARRAYS USING MASKED S-BOX

Parallel AES Encryption Engine for Many Core
Processor Arrays Using Masked S-Box

http://dx.doi.org/10.3991/ijes.v2i4.4194

Dhanya Pushkaran, Neethu Bhaskar
Sree Narayana Gurukulam College of Engineering, Kadayirippu, Kolenchery

Abstract—With the ever increasing growth of data commu-
nication, hardware encryption technology will become an
irreplaceable safety technology. In this paper, I present a
method of AES encryption and decryption algorithm with
128 bit key on an FPGA. In order to protect “data-at-rest”
in memory from differential power analysis attacks with
high-throughput advanced encryption standard (AES)
engine with masked S-Box is proposed. By exploring differ-
ent granularities of data-level and task-level parallelism, we
map 2 implementations of an Advanced Encryption Stand-
ard (AES) cipher with online key expansion on a fine-
grained many-core system.

Index Terms—Advanced encryption standard (AES), differ-
ential power analysis (DPA), field programmable gate array
(FPGA), masking, !"#$%&'("#$)*+,(#-%./'$*+0('(11$1+0'/.$22/'+

I. INTRODUCTION
With the development of information technology, pro-

tection of information through encryption is very im-
portant in day to day life. In 2001, national institute of
standard and technology replaces the data encryption
standard and select the Rijndael algorithm as the advanced
encryption standard(AES)[1]. AES has been used in many
applications, such as secure communication system, digi-
tal video/audio recorder, RFID tags and smart cards etc.
One of the main advantage of Rijndael algorithm is that it
can be used for both hardware and software implementa-
tion.

To satisfy many application numerous hardware im-
plementation of AES has been reported to achieve high
throughput even though time consuming and costly. One
of the main block of AES is the SubByte transformation
[1] which uses S-box look-up table that is stored in
memory. This data stored in storage are under the risk of
information leakage in embedded applications. The differ-
ential power analysis (DPA) attack [2] was further devel-
oped as one of the most promising power analysis attacks
which is related to the power consumption. So the protec-
tion of data from DPA is very important. For that instead
of using S-Box lookup table masked S-Box is being im-
plemented. We perform the masked S-Box mainly over
!"!"!#$ Therefore, we only need to transform the input
values from !"!""#% to !"!"!#% and transform the output
values back from !"!"!#% to !"!""#% which reduces the
hardware resources.

This paper present the online expansion of two type
AES implementation on a fine grained many core system
to achieve high performance and throughput per unit of
chip.

II. AES ALGORITHM
AES is a key iterated block cipher that contains several

round of transformation on the state. It is a symmetric
encryption algorithm uses 128 bit key to generate output
cipher text. It takes 128 bits of data block and each 128-bit
data block is considered as a 4-by-4 array of bytes, called
the state. The number of iteration in the AES, Nr, is de-
fined by the length of the round key, which are 10 for key
lengths of 128 bits.

Figure 1. Block Diagram of AES Algorithm

The figure 1 shows the basic steps of AES algorithm
with online key expansion. The steps include:

1. SubBytes: Nonlinear bite transformation which
replace each input byte with the byte value from
the substitution box. Substitution box is explained
in section

2. ShiftRow: Each row of the state is left shifted ac-
cording to the row number. First row no shifting
is done, for 2nd row 1byte shifting is done and so
on.

3. MixColumn: Each column of the array is consid-
ered as a polynomial over GF(2!) and modular
multiplication is done with irreducible polynomial
x"+1. The resulting polynomial is then multiplied
with a fixed polynomial given in equation (1).

iJES ‒ Volume 2, Issue 4, 2014 35

PAPER
PARALLEL AES ENCRYPTION ENGINE FOR MANY CORE PROCESSOR ARRAYS USING MASKED S-BOX

A(x) = {03}x!+ {01}x"+{01}x+{02}########$%&

4. AddRoundKey: Simple bitwise XOR operation of

the state with the key expanded value is done. The
key expansion is done by the following steps:
1. KeySubWord: Each byte of the key value is

replaced with the values from the substitution
box.

2. KeyRotWord: Each row is done a 1 byte
shifting to the left.

3. KeyXor: Each row w[i] is XORed with the
previous row w[i-1] to form a new row w'[i].

III. MASKED S-BOX
In SubByte transformation, each byte is replaced with a

value from S-Box. Since there are only 256 representation
of 1 byte, a lookup table of S-Box can be implemented. So
the power and time consumption is reduced. But this re-
sult in differential power analysis (DPA) attach[3][4].

So here S-Box using galois field can be implemented to
avoid DPA attach. It can be implemented by taking the
multiplicative inverse and apply the affine transformation.
But calculating the multiplicative inverse in GF(2!) is
very expensive. So masked S-Box is implemented that
calculates multiplicative inverse of GF(2!) using GF(2").
The input byte is mapped to two elements of GF(2") and
then find out the multiplicative inverse using GF(2").
After that the two elemnts inverse mapping to GF(2!) is
done. Figure 2 shows the steps to find out the masked s-
box.

A. Multiplicative inverse
For hardware implementation far better suited represen-

tation is to see field GF(2ˆ8) as a quadratic extension of
the field GF(2ˆ4). In this case, an element a # GF(2ˆ8) is
represented as the linear polynomial with coefficient in
GF(2ˆ4)

Map(a)= a$ x + al, a # GF (2ˆ8); ah, al # GF(2")
For hardware implementation, the equation for map (a)

is shown in equation 2.

ah x + al = map (a), ah, al # GF(2"), a # GF(2!)
(2)

aA = a1! a7, aB= a5 ! a7,
aC= a4 ! a6 al0= ac ! a0 ! a5,
al1= a1 ! a2, al2= aA,
al3= a2 ! a4 ah0= ac ! a5,
ah1= aA ! aC, ah2= aB ! a2 ! a3,
ah3= aB

After finding out the multiplicative inverse in GF(2"),
two term polynomial ah x + al converted back to element
in GF(2!). The equation for map!" is shown in equation 3.

map!" (ah x + al) = a, ah, al # GF(2"), a # GF(2!)
(3)

Figure 2. Block diagram of masked S-Box

aA= al1 ah3, aB= ah0 ah1
a0= al0 ! ah0, a1= aB ! ah3,
 a2= aA ! aB, a3= aB ! al1 ! ah2,
a4= aA ! aB ! al3, a5= aB ! al2,
 a6= aA ! al2 ! al3 ! ah0, a7= aB ! al2 ! ah3

 Multiplication in GF(2") corresponds to multiplica-
tion of polynomial modulo an irreducible polynomial of
degree 4. The irreducible polynomial is given by,
M(x)= x" + x+1. For hardware implementation, byte
multiplication is given in equation 4.

q(x) = a(x). b(x). mod m(x), a(x),b(x),q(x) # GF(2")

(4)

aA= a0 ! a3, aB= a2 ! a3

q0= a0b0 ! a3b1 ! a2b2 ! a1b3

 q1= a1b0 ! aAb1! aBb2 ! (a1 a2)b3

q2= a2b0 ! a1b1 ! aAb2 ! aBb3

 q3= a3b0 ! a2b1 ! a1b2! aAb3

The multiplicative inverse can be find out using extended
Euclidean algorithm. It can be derived by solving the
equation a(x).a()$*&+,-# +.$*&/# %0# 1,2345,6# 57# 78,96#
56#:;3<45,6#=0#
#
q(x) = a(x)#>% mod m?(x), q(x), a(x) # GF(2") (5)

36 http://www.i-jes.org

PAPER
PARALLEL AES ENCRYPTION ENGINE FOR MANY CORE PROCESSOR ARRAYS USING MASKED S-BOX

 aA= a1 ! a2 ! a3 ! a1a2a3
q0= aA! a0! a0a2! a1a2 ! a0a1a2
q1= a0a1 ! a0a2 ! a1a2 ! a3 ! a1a3 ! a0a1a3
q2= a0a1 ! a2 ! a0a2 ! a3 ! a0a3 ! a0a2a3
q3= aA ! a0a3 ! a1a3 ! a2a3

B. Affine Transformation
 Affine transformation I given by, A'= M(a).X ! [v]
Where [v] =x@+xA+xB+x and m(a)= x@+x"+xC+x+1.
The equation for hardware implementation is given in

equation 6.

q = aff_tran(a) q= aff_trans>) (a) (6)

aA= a0 ! a1, aA= a0 ! a5,
aB= a2 ! a3 aB= a1 ! a4
aC= a4 ! a5, aC= a2 ! a7,
aD= a6 ! a7 aD= a3 ! a6
q0= D0 ! aC ! aD q0= D5 ! aC
q1= a5 ! aA! aD q1= a0 ! aD
q2= a2 ! aA ! aD q2= D7 ! aB
q3= a7! aA ! aB q3= a2 ! aA
q4= a1! aB ! aC q4= a1! aD
q5= D1 ! aB ! aC q5= a4 ! aC
q6= D6 ! aB ! aC q6= a3 ! aA
q7= a3 ! aC ! aD q7 = a6 ! aB

IV. FINE GRAINED MANY CORE ARCHITECTURE
The performance of architecture is roughly proportional

to the square root of its complexity. So as the complexity
is decreased the performance will increase but it may
increase the logical area. So a many core architecture can
perform better with complexity. That is instead of using
single complicated core many core is used, which increas-
es the performance.

V. AES IMPLEMENTATION
In this paper I present two different AES implementa-

tion with online key expansion and the throughput of the
design is measured.

A. One task one processor (OTOP)
Each step in the AES algorithm is considered as a task

as shown in the dataflow diagram in figure 3. Each task is
mapped on to one processor in many core processors. So
we call this implementation One Task One processor. For
single iteration about 10 cores are required and after com-
pleting first iteration the same cores are used for the fol-
lowing iteration.

B. Loop unrolled nine times
To enhance the throughput, new design is implemented

as shown in figure 4. Here each loop is done by another
set of core. So loop unrolled nine times break the data
dependency and work on multiple data block. About 60
cores are required to implement this design.

Figure 3. OTOP dataflow diagram

Figure 4. loop unrolled nine times data flow diagram

VI. RESULT
I have implemented the proposed design with hardware
description language which is synthesized using Xilinx
ISE 14.1and ported the design to Spartan-6 LX45 FPGA.
The table 1 shows the throughput obtained from the two
designs. From this table it is clear that the loop unrolled
nine times design is very much faster than one task one
processor design.

TABLE I.

Implementation Throughput

One Task One Processor 1.98 Gbps

Loop Unrolled Nine Times 85.15Gbps

VII. CONCLUSION
Secure “data-at-rest” and enhance the throughput are

the important factor for large data transformation system.
so, modern systems shift the data encryption from a soft-
ware platform to a hardware platform. But the hardware
based encryption still facing the possibility of DPA at-
tacks. In this case, an AES with masked S-box has been
proposed to resist the DPA attach with acceptable area on
FPGA. The proposed masked -Box needs to map the input
values from GF(2!) to GF(2") at the beginning of the
operation and map the result back from GF(2") to GF(2!)
once at the end of the operation Which reduce about 20%
area resources.

ACKNOWLEDGMENT
I would like to express my heartfelt gratitude and

thanks to my beloved guide Ms. Neethu Bhaskaran, Assis-
tant Professor, Dept. of Electronics and Communication
Engineering, SNGCE Kadayiruppu, whose guidance I
could complete the thesis work to the level I had planned,
for the regular reviews and suggestions. It gives me great
pleasure to thank her for the conviction she brought in into
selecting the topic of work, and the technical and literary
guidance she imparted through the different stages of its
execution.

REFERENCES
[1] Advanced Encryption Standard (AES), FIPS-197, Nat. Inst. of

Standards and Technol., 2001.

iJES ‒ Volume 2, Issue 4, 2014 37

PAPER
PARALLEL AES ENCRYPTION ENGINE FOR MANY CORE PROCESSOR ARRAYS USING MASKED S-BOX

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc.CRYPTO, 1999, vol. LNCS 1666, pp. 388–397.

[3] L. Goubin and J. Patarin, “DES and differential power analysis
(the ‘duplication’method),” in Proc. CHES LNCS, 1999, vol.
1717, pp. 158–172.

[4] S. Messerges, “Securing the AES finalists against power analysis
attacks,”in Proc. FSE LNCS, 2000, vol. 1978, pp. 150–164.

[5] &$'$% ()*+,-.% /$% &+,01+.% ($% '234)506.% &$% 73,824.% 9$% 9:)8-);.%
&$'$<63.% <$% ')3;.% ($9$% 94=,86.%)4=% >$'$% '806+4)?38*+@.% ABC%
:DE6%F)*05,%7/!G"HI"#%J2?E260*,K/0,;=%9L&KL4M8@E*NO,M8@E*%
9MM,;,8)*28% P28% J24*,4*KQ82*,M*024% 04% HB% 4?% <0:+K
Q,8P28?)4M,% (0M82E82M,66286.R% SLLL% T$% &2;0=K&*)*,% J08M30*6.%
52;$% HU.% 42$% H.% EE$% VUVKVVU.% 9E8$% "WXX$
http://dx.doi.org/10.1109/JSSC.2011.2108131%

[6] 9$%<2=Y)*%)4=%S$%Z,8D)3-+,=,.%A9%"X$BH%:D0*6N6%/3;;@%Q0E,;04,=%
9L&% Q82M,6628% 24% /Q79.R% Q82M$% SLLL% X"*+% 944$% &@?E$% /0,;=K
Q82:8)??)D;,% J36*2?% J2?E3*04:% ()M+04,6.% EE$% CW[KCW\.%
9E8$%"WWH$ http://dx.doi.org/10.1109/FCCM.2004.1%

[7] JKT% J+)4:.% J$K]$% <3)4:.% '$K<$% J+)4:.% ^KJ% J+,4.%)4=% J$K
J$<60,+.A<0:+% _+823:+E3*% C"K`0*% 9L&% S?E;,?,4*)*024% 04%
/Q79.R%Q82M$% SLLL%960)%Q)M0P0M%J24P$%J08M30*6%)4=%&@6*,?6.%EE$%
X[WUKX[W\.%F25$%"WW[$%

[8] M. McLoone and J. V. McCanny, “Rijndael FPGA implementa-
tions utilizing look-up tables,” in Proc. IEEE Workshop Signal
Process. Syst., Antwerp, Belgium, 2001, pp. 349–360.

[9] V. Rijmen, “Efficient Implementation of the Rijndael S-Box,”
Dept. ESAT., Katholieke Universiteit Leuven, Leuven, Belgium,
2006. [Online] Available:
http://www.networkdls.com/Articles/sbox.pdf

[10] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully pipelined
processor on FPGA,” in Proc. IEEE 12th Annu. Symp. Field-
Programm. Custom Comput. Mach., 2004, pp. 308–309.

[11] S. Mangard, N. Pramstaller, and E. Oswald,“Successfully attack-
ing masked AES hardware implementations,” in Proc. CHES
LNCS, 2005, vol. 3659, pp. 157–171.

[12] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the AES S-box,” in Proc.
FSE LNCS, Setubal, Potugal, 2005, vol. 3557, pp. 413–423.

[13] H. Kim, S. Hong, and J. Lim, “A fast and provably secure higher-
order masking of AES S-box,” in Proc. CHES LNCS, Nara, Japan,
2011, vol. 6917, pp. 95–107.for masked AES implementation,” in
Proc. IEEE 54th Int. MWSCAS, Seoul, Korea, 2011, pp. 1–4.

[14] M. Alam, S. Ghosh, M. J. Mohan, D. Mukhopadhyay, D. R.
Chowdhury, and I. S. Gupta, “Effect of glitches against masked
AES S-box implementation and countermeasure,” IET Inf. Securi-
ty, vol. 3, no. 1, pp. 34–44, Feb. 2009.

[15] E. Trichina, T. Korkishko, and K. H. Lee, “Small size, low power,
side channel-immune AES coprocessor: Design and synthesis re-
sults,” in Proc. AES LNCS, 2005, vol. 3373, pp. 113–127.

[16] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S.
K. Hsu, H. Kaul, M. A. Anders, and R. K. Krishnamurthy, “53
Gbps native !"!"H#"%composite-field AES-encrypt/decrypt accel-
erator for content-protection in 45 nm high-performance micro-
processors,” IEE

AUTHORS
Dhanya Pushkaran is with M.Tech, VLSI and Em-

bedded System, ECE, SNGCE, Kadayirippu, Kolenchery
(dhanyapushkaran@gmail.com, go4dhanu@gmail.com)

Neethu Bhaskar is Assistant Professor at ECE,
SNGCE, Kadayirippu, Kollenchery (nth-
bhaskar@gmail.com).

Submitted 08 October 2014. Published as resubmitted by the authors
25 October 2014.

38 http://www.i-jes.org

	iJES – Vol. 2, No. 4, 2014
	Parallel AES Encryption Engine for Many Core Processor Arrays Using Masked S-Box

