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Abstract—Plasticity is a basic process that underlies neural and cognitive 
functioning, unraveling thus the former’s pervasive role in development and 
learning. Plasticity processes operate in both normal development and in the 
development following early injury. However, as the neural system matures, 
there is a gradual commitment of neural resources to, maturationally defined 
functions and a concomitant loss in flexibility and in the capacity of the system 
to reorganize. Brain plasticity has been intertwined with induced reorganization 
of local patterns of connectivity in the neural system, whose specification and 
stabilization relies on dynamic processes that are the product of the 
multidirectional interaction of genetic processes, contingencies of input and the 
demands of the learning environment. Moreover, bioenergetic challenges-
exercise, diet and activity in neuronal circuits-synaptic plasticity and 
neurogenesis, are innately connected to cognitive function, such as learning, 
memory, attention, emotion regulation and human behavior.  
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1 Introduction 

Neurons interconnect and communicate with each other at specialized sites, called 
synapses. The majority of excitatory synapses reside on dendritic spines, tiny 
protrusions emanating from dendrites (1). Spines contain molecular components for 
synaptic signaling and plasticity, such as ionotropic and metabotropic receptors, 
cytoskeletal and adaptor proteins as well as various signaling molecules (2, 3, 4, 5, 
and 6). Spine formation and plasticity is fundamental both to the development and 
experience-dependent remodeling of neural circuits throughout human’s (30) and 
animal’s life (7, 8, 9, 10, 11, 12, 13, and 14). Furthermore, brain circuits change in 
response to early sensory experience, depending on the type of manipulation, the time 
window of manipulation and the type of neurons (15, 16, and 17).   

Rohrer first attempts to show that brain areas that researchers once assumed were 
only activated by spatial and bodily orientations are also activated by linguistic cues 
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that describe these particular orientations, thus explaining the neural multimodal 
activation patterns (63). Neuronal groups are connected to a vast number of other 
groups regardless of spatial proximity. These many groups are reciprocally connected 
and functionally distinct from the rest of the brain. Due to this connectivity, small 
changes in environmental situations can cause new conceptual associations to be 
made and new behaviors to arise. Edelman suggests that reentry is the 
neurophysiological foundation of the “remembered present” that defines human 
consciousness (64, 65). The recursive activation of neuronal systems allows 
organisms that act in the moment, and in a particular problematic situation, to 
redeploy past patterns of behavior. Reentry functions as a construct of human 
conception, literally “piling together again” the various qualities and aspects of one’s 
perceptual fields, shaping his primary consciousness. This coherence, however, does 
not preclude the possibility of novel forms of categorization and coordinated motor 
responses that arise in light of, and seek to respond to, surprising environmental 
conditions. Degenerate and reentrant neural circuits allow for changes in memories 
and concepts as new experiences occur and a new environmental context evolves. 
Memory, in a degenerate-reentrant system is “recategorical”, re-creative, or 
imaginative. Hence, our bodies and their relationship with their environmental 
situations, continually structure human thinking (66). 

2 Diet 

Neurogenesis, the process by which neurons are born, proliferate, differentiate and 
integrate into established circuitry was previously thought to occur only in the 
embryo. It has now been demonstrated that neurogenesis occurs also in the adult brain 
of most animals, including humans. 

Excessive intake of certain macronutrients, such as simple carbohydrates and SFA, 
can lead to obesity and attendant metabolic dysfunction, also reflected in alterations in 
structural plasticity, and, intriguingly, neurogenesis, in certain brain regions. Because 
of classic associations between neurogenesis and the hippocampus, in learning and 
cognition, this brain region has also been the focus of attention in the study of diet and 
neurogenesis. It has been proposed that adult hippocampal neurogenesis may link 
energy metabolism and cognition in order to regulate body weight functioning as an 
‘interface’ between the two. Neuroplastic changes in the hypothalamus, including 
altered neurochemical phenotype, neuronal activation, synaptic connections, and 
dendritic growth and pruning, can be stimulated by dietary factors, not only during 
critical periods of development, but also in adulthood. In summary, evidence 
continues to build for the stimulation of adult neurogenesis, in brain regions 
associated with cognition, by chronic consumption of PUFA-enriched diets (18). 

In a double-blind randomized interventional study, evidence showed beneficial 
effects of LC-n3-FA on cognition, underlining positive effects of EPA and DHA on 
neuronal functioning as postulated by animal experiments. More specifically, marine 
LC-n3-FA (long-chain omega-3 polyunsaturated fatty acids) improved executive 
functions, white matter microstructure, hippocampal GM volume, and vascular 
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markers in healthy older adults. Regional increases in GM volume have been 
suggested to serve as measures of structural plasticity in the living adult human brain, 
for example, due to synaptogenesis, neurogenesis, and/or angiogenesis. Improvement 
in cognitive performance might be due to positive effects of LC-n3-FA on neuronal 
function, via enhancement of synaptic membrane fluidity and plasticity. Stimulation 
of myelin synthesis might also explain improved white matter microstructure after 
LC-n3-FA. In addition, DHA has been found to promote neurite outgrowth and 
neurogenesis in the hippocampus in addition to an increase in synaptic membrane 
areas and in the expression of synaptic proteins. These molecular changes might have 
led to the observed improvements in memory consolidation and GM volume, for 
example, in the hippocampus (19).  

Neurotransmitters come in chemical classes, such as the amines, amino acids and 
peptides. The body possesses endogenous, opiate-like substances, the enkephalins, 
which influence pain perception and euphoria. Protein precursors of the enkephalins 
and related opioid peptides are the endorphins. In addition, glutamate is an excitatory 
neurotransmitter throughout the central nervous system, whereas glycine is a major 
inhibitory transmitter in the lower brain stem but not in the cerebral cortex. 
Synaptosomes can be maintained only in the presence of sucrose and transmitter 
transport requires physiologic concentrations of various ions that rupture the nerve 
endings (20). 

Many studies have investigated into specific foods or compounds that can provide 
a cognitive advantage or disadvantage. Rodents on a diet that lacks essential vitamins 
or minerals exhibit decreased hippocampal neurogenesis, which is accompanied by 
impaired learning and memory. In contrast, rodents on a diet supplemented with 
polyphenols or omega 3 fatty acids show increased hippocampal neurogenesis as well 
as improved performance on cognitive tests (21). 

3 Physical Training and Experience 

Neuroplasticity refers to structural and functional changes in the brain that are 
brought about by training and experience throughout one's lifetime. The brain is a 
dynamic organ that is designed to develop in response to early experiences leading to 
behavioral changes as well as memory enhancement. At birth, each neuron has 7500 
connections. These increase rapidly in the first 2 years of life until the synaptic 
connections are doubled in the adult brain. Sensory, motor and language activities in 
combination with environmental stimulation enhance synaptogenesis, myelination and 
neuronal connectivity in the first three years of one’s life. With every new experience, 
the brain slightly rewires its physical structure and this rewiring is mediated through 
the signaling cascade and activation of gene transcription in the nucleus that support 
synaptic connections. Moreover, experience alters neural development through 
influencing the gene expression, the release of neurotrophins and the release of 
neurotransmitters like norepinephrine that play a role in normal development. These 
findings have radical implications for conceptualizing the dynamic interplay between 
nature and nurture, early in one’s lifetime (22).  
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Several studies have pointed at the notable increase in neurogenesis attributed 
mainly to physical activity associated with exercise and an enriched environment 
operating synergistically (23, 24). Running combined with sensory, social, and motor 
stimulation increase cerebral blood flow (25), blood-brain barrier permeability (26), 
and glucose metabolism (27). These changes combined might increase hormone and 
growth factor level, such as VEGF (28), GDNF, and BDNF (29). BDNF in particular 
has received considerable attention in neurogenesis regulation.  

Sensory-based neuroplasticity addresses the links among sensory input, brain 
function, and behavior, thus on the multiple reflections of neuroplasticity or changes 
in the brain and their forthcoming changes in environmental input or context. Studies 
point to the importance of active exploration of complex environments for 
neuroplastic changes to occur in the brain; ongoing engagement rather than a single 
experience is strictly important. Moreover, doing (physical performance) has a 
different effect than thinking about doing. In addition, deficits in one sensory 
modality result in alterations in how the brain processes information in other 
modalities and a typical nervous system can flexibly rely on the sensory information 
available within the environment to complete a task. Sensory strategies used are 
typically, task and experience specific, and sensory processing strategies can be 
linked to the stage of motor performance (30). 

4 Mood, Cognition and Learning 

Newborn neurons are added to both human and rodent adult hippocampus. It is 
also well understood that adult neurogenesis contributes to cognition and mood 
alteration in addition to serving as a model system of endogenous brain regeneration 
(31, 32). 

Research has shown that there is a correlation between the level of hippocampal 
neurogenesis and cognition and specifically, in relation to changes in hippocampus-
dependent learning and memory. Moreover, innate factors of the brain, such as 
structural plasticity, neurotrophin and hormone levels in combination with 
environmental factors, such as physical activity may lead to neurogenesis by 
hippocampus-dependent learning. However, neurogenesis can also be influenced by 
the activities of the immature newborn neurons as far as their survival, maturation and 
subsequent integration into the existing neural circuits are concerned. Furthermore, 
newborn neurons are behavioral regulators beyond any doubt (33). 

Brain development and plasticity are complementary, but relatively independent 
systems. Plasticity is a basic process that underlies neural and cognitive functioning, 
unraveling thus the former’s pervasive role in development and learning. Plasticity 
processes operate in both normal development and in the development following early 
injury. However, as the neural system matures, there is a gradual commitment of 
neural resources to maturationally defined functions and a concomitant loss in 
flexibility and in the capacity of the system to reorganize. However, brain plasticity 
has been intertwined with induced reorganization of local patterns of connectivity, 
given the available neurotrophic factors, stimulation of afferents projecting to target 
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sites and stimulation emanating from the target zone (34). The effects of 
environmental enrichment as well as the reorganization of primary sensory systems 
have also been shown to affect the survival of postnatally produced neurons within 
the dentate gyrus of the hippocampus. Thus, specification and stabilization of neural 
systems relies on dynamic processes that are the product of the multidirectional 
interaction of genetic processes, neural systems, contingencies of input (35, 36) and 
the demands of the learning environment (37). Therefore, language, visuospatial, and 
affective processes are neural-specific systems, depending on plastic, but innately 
competitive processes occurring in the brain, due to variable input or damage to the 
neural substrate (38). 

 Learning affects not only the survival of cells but also the maturation of newborn 
neurons. Training with MWM tasks increases the complexity of dendritic arborization 
and the spine density of adult-born GCs (39, 40). Indeed, this learning effect appears 
to influence where to the neurons will eventually respond (41, 42, 43).  

Multiple studies have documented neuroplastic changes in healthy human brains as 
a result of normal processes, such as learning (44, 45, 46). Studies using transcranial 
magnetic stimulation (TMS) to map motor cortex found significantly increased 
cortical representation with task practice for the involved muscle groups, suggesting 
increased neural connections to support task performance (47, 48). Similar results 
were found when the task was practiced mentally, suggesting that mental rehearsal 
alone may produce neuroplastic changes in the brain. Both cross-sectional and 
longitudinal studies support the induction of neuroplastic changes by musical training 
(49). Other forms of stimulation (e.g., TMS, deep brain stimulation) have also been 
utilized in treatment for various conditions by modifying activation patterns in the 
brain with the intention of improving functioning (50). Exercise, which has been 
shown to ameliorate behavioral symptoms of stress and enhance hippocampal 
neuroplasticity in animal models, has also been considered as a potential adjunctive 
treatment for neuropsychiatric conditions. Physical activity attenuates many of the 
harmful effects of stress (51, 52). 

5 Neuronal Mitochondria 

Exercise and energy restriction activate signaling pathways in neurons that bolster 
mitochondrial function and cellular stress resistance. Moreover, by brain autonomous 
and non-autonomous mechanisms described below, mitochondrial responses to 
bioenergetic challenges can enhance synaptic plasticity, learning and memory as well 
as neurogenesis. In neurons, mitochondria are critical for maintenance of membrane 
ion (Na+ and Ca2+) gradients and for neurotransmission and synaptic plasticity (53). 
Therefore, mitochondrial bioenergetics is pivotal for the many different ATP-
dependent processes that enable neurons to function and respond adaptively to 
environmental challenges (54, 55 – 59). Three bioenergetic challenges that stimulate 
adaptive responses of mitochondria in neurons are exercise, dietary energy 
restriction/fasting and activity in neuronal circuits. More specifically, the 
enhancement of brain cell-intrinsic neurotransmitters (particularly glutamate) and 
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neurotrophic factors (BDNF, FGF2) as well as the enhancement of signaling 
molecules emanating from peripheral organs (particularly liver and muscle) including 
the ketone 3OHB, irisin [60] and cathepsin B [61] mediate the mitochondria-centered 
adaptive responses leading to the improvement of brain function and resilience (62). 

6 Mental Imagery and Self-Images 

The brain cannot tell the difference between an actual physical event and the vivid 
imagery of the same event (67). Therefore, preparation, repetition, elaboration, 
intensification and modification of behaviors can be applied through guided imagery 
in an attempt to improve one’s confidence, controlling anxiety and final performance 
in educational, psychotherapeutic and athletic contexts (68). These findings 
strengthen evidence that imagery and perception share common processing 
mechanisms, and demonstrate that the specific brain regions activated during mental 
imagery depend on the content of the visual image (69). In addition, sensory–motor 
knowledge may allow the observer to generate predictions about subsequent actions 
that could influence sensory systems in a top–down fashion and facilitate subsequent 
perceptual recognition. The view promoted by Mahon and Caramazza admits that 
motor knowledge can influence or augment action “understanding” to some degree, 
but without committing to the empirically untenable position that action 
understanding is dependent on the motor system. This is a desirable result and 
deserves empirical evaluation (70). 

7 Meditation and lower frequency oscillations  

Rhythmic stimulation of frontal cortical (frontal theta) activity in an animal model 
can produce some of the affective changes found in humans. Artificially inducing 
rhythmic activity reduced stress hormones and anxiety. However, the exact brain 
mechanisms that support these behavioral changes in mice are elusive. Furthermore, 
experimental manipulation of frontal theta activity in humans would shed light on the 
relation between altered white matter and meditation (71-74).  

Brain functions embedded in the prefrontal cortex (PFC), anterior cingulate cortex 
(ACC), amygdala, nucleus accumbens (NA), and default mode network (DMN) 
regions, such as emotional, self-referential, and reward-motivation processing, have 
been modulated by, a gratitude and a resentment intervention. The modulation of 
intra-DMN functional connectivity (FC) during the gratitude intervention might 
contribute to reorganization of inter-network connectivity, such as resting-state 
functional connectivity (rsFC) between the DMN and the executive control network 
(75). Given that, individuals with low anxiety have shown significant negative 
amygdala–dorsomedial PFC rsFC and that the strength of amygdala–PFC rsFC has 
been found to be a neural predictor of individual anxiety (76), gratitude intervention 
could play a pivotal role in reducing anxiety. Moreover, slight modulation of 
connections in the NA-based functional network during the two interventions might 
have contributed to the considerable difference in rsFC after the interventions through 
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reorganization of the functional networks from the intervention-state to the resting-
state (77). 

In addition, mindfulness training was found to increase functional connectivity 
among dorsolateral prefrontal cortex (dlPFC)—a hub of the executive control 
network—and frontoparietal regions (dorsal network e.g. superior parietal lobule, 
supplementary eye field, MFG and ventral network e.g. right IFG, middle 
temporal/angular gyrus)  that coordinate executive function (88). 

Focused - attention meditation (FAM)’s reported major long-term benefit is 
cognitive—attentional control. On the other hand, loving-kindness meditation (LKM) 
emphasizes a state of universal love and compassion, equalizing the self and others 
(78, 79). Evidence supports the existence of a dissociable pattern of activation 
associated with FAM and LKM as evoked by cognitive (CPT) and emotion (EPT) 
tasks, thus depicting domain-specific plastic changes in neural activity [80]. However, 
long-term LKM may not be associated with change in attention-related regions, rather 
than with these emotion-processing regions, which may have an impact on emotion 
regulation and the subsequent production of positive emotions (81). 

Findings of lower intra-individual variability in gain and spatial error during the 
antisaccade (AS) tasks indicate superior executive control and frontal lobe functioning 
developed through training in cultivated mindfulness (82). Mindfulness improves 
emotion regulation by exerting a positive influence on executive control processes 
(83). Furthermore, mindfulness training or practice is known to exert attenuating 
effects on the Default Mode Network (84, 85), associated with mind-wandering or 
stimulus-independent thought (86), which may have further enhanced the 
performance on the tasks.  

Changes in the observed amplitude of brain electrical oscillations appear to vary 
across meditative techniques, although one common feature appears to be the 
enhanced gamma power in the parieto-occipital area. In addition, one specific finding 
that seems to be unique amongst these three groups of meditative practice is the 
enhanced alpha power seen as a trait effect in Vipassana practitioners compared to 
Ishashoonya yoga and Himalayan yoga tradition practitioners (87).  

The Liverpool Mindfulness Model captures the core components in mindfulness 
meditation practice, wherein the development of more efficient attentional control is a 
central issue. Regular engagement in mindfulness practice develops and refines the 
mental core processes, primarily based on the refinement of attentional functions that 
interact with and facilitate regulatory processes of emotions and cognitions. 
Improvements in these core processes result in a more balanced mental stance or 
attitude that will result in physical and mental well-being, and quality of behavior. It 
seems that mindfully focusing on the somatosensory experiences of breathing leads to 
specific improvement to resource allocation and more specifically to those perceptual 
discrimination processes that require a higher degree of attentional control (increase 
of activity in medial and lateral occipitotemporal areas of the left hemisphere, whereas 
the activity in lateral occipitotemporal and inferior temporal regions of the right 
hemisphere was decreased) (89, 90). 

Meditators selectively attend to happy faces, whereas control subjects show 
attentional biases towards both angry and happy faces. Long-term meditation practice 
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adaptively affects attentional biases towards motivationally significant stimuli and 
these biases reflect positive mood and predominance of appetitive motivation (91). 

Meditation training can enhance attention and improve emotion regulation through 
increase in alpha, beta, and gamma power bands as well as in alpha and beta 
coherence. Meditation gives direct access to hidden power and forces the mind to act 
differently to gain strength, reducing pain and stress. Increase in theta and alpha band 
power and decrease in overall frequency results in reduction of stress and mind 
relaxation with meditation (92). 

8 Brain Computer Interfacing 

Abdulkader et al. review on Brain Computer Interface (BCI) technology for 
communication and mind-controlling of machines, assistive robots, physiological 
measuring tools, various consciousness level determination systems, brain behavior 
measuring tools, neuroprosthetic devices, retraining healthy brain areas, human brain 
activity modulation as well as self-regulation learning. The various devices used for 
capturing brain signals can be used, non-invasively, both for training and assessment 
of cognitive and mental health (93). 

9 Conclusion 

Multiple studies have documented neuroplastic changes in healthy human brains as 
a result of normal processes, such as learning. More specifically, innate factors of the 
brain, such as structural plasticity, neurotrophin and hormone levels in combination 
with environmental factors, such as physical activity may lead to neurogenesis by 
hippocampus-dependent learning. Similar results were found when the task was 
practiced mentally (Mental Imagery), suggesting that mental rehearsal alone may 
produce neuroplastic changes in the brain. Both cross-sectional and longitudinal 
studies support the induction of neuroplastic changes by musical training. Other forms 
of stimulation (e.g., Brain Computer Interfacing, Mindfulness and Meditation) have 
also been utilized in training or treatment for various conditions by modifying 
activation patterns in the brain with the intention of improving functioning.  

Accumulating evidence over the last years has clearly demonstrated a role for adult 
hippocampal neurogenesis (AHN) in hippocampus-dependent cognition and 
emotional control. Newborn dentate GCs (granule cells) neurons may be more 
“specialized” in the processing of incoming environmental information than mature 
GCs. A feedback loop between the cells that may be most active in encoding new 
information (adult-generated GCs) and the CA3 (pyramidal neurons) auto-associative 
network may enhance efficiency and accuracy of memory storage (94). However, 
several changes occurring in the dentate gyrus (DG) need to be specified in relevance 
to the addition of pattern-associated cohort of newborn neurons. How does top-down 
or cortical input regulate adult hippocampal neurogenesis (AHN) and its function in 
learning new information? How do adult-born hippocampal neurons regulate the HPA 
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axis, which contributes to the neurogenesis-associated regulation of anxiety-related 
behaviors? (95)  

Moreover, gratitude, focused – attention and mindfulness training have been found 
to modulate the intra-DMN (Default Mode Network) functional connectivity as well 
as increase alpha, beta, and gamma power bands of frontal lobe functioning with the 
aim to enhance attention and improve emotion regulation.  
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