
BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

Bayesian Statistics as an Alternative to
Gradient Descent in Sequence Learning

R. Spiegel1,2,3
1 Ludwig-Maximilians-Universität, Sensory-Motor Learning Lab, Institut für Med. Psychologie, München, Germany

2 Generation Research Ltd., Bad Tölz, Germany
3 University of Cambridge, Wolfson College, Cambridge, United Kingdom

Abstract—Recurrent neural networks are frequently applied
to simulate sequence learning applications such as language
processing, sensory-motor learning, etc. For this purpose,
they often apply a truncated gradient descent (=error
correcting) learning algorithm. In order to converge to a
solution that is congruent with a target set of sequences,
many iterations of sequence presentations and weight
adjustments are typically needed. Moreover, there is no
guarantee of finding the global minimum of error in a
multidimensional error landscape resulting from the
discrepancy between target values and the network’s
prediction. This paper presents a new approach of inferring
the global error minimum right from the start. It further
applies this information to reverse-engineer the weights. As
a consequence, learning is speeded-up tremendously, whilst
computationally-expensive iterative training trials can be
skipped. Technology applications in established and
emerging industries will be discussed.

Index Terms—Gaussian processes, Error-correction, Bayes
theorem, Sequential learning, Recurrent neural networks.

I. INTRODUCTION
This article has several aims: First, it will be shown that

the output produced by recurrent neural networks relying
on gradient descent can be predicted by applying Bayes
theorem. In the past, this was demonstrated when taking a
localist coding scheme to represent input and target values
[1]. In a localist coding scheme, only one unit is active,
whilst all other units are inactive, e.g. (1, 0, 0, 0, 0, 0, 0,
…, 0). Now it will be shown that Bayes theorem can just
as well predict the output after using a distributed coding
scheme. In a distributed coding scheme, more than one
unit is active, e.g. (1, 0, 1, 0, 0, 0, 1). This not only applies
to distributed coding schemes with binary numbers, but
also to those with continuous numbers, e.g. (0.9, 0.1, 0.3,
0.1, 0.5, 0.8).

Second, a statistical approach can be used to infer the
global minimum of error in the multidimensional error
landscape. If there is a discrepancy between the output
value that the network predicts and the target value, an
error is computed. In the optimal case, the discrepancy
between predicted output and target should be zero, which
would yield an error of zero. For trivial tasks this may
work, but one might want to skip a neural network
altogether if the task is so trivial that a target can be
predicted easily. For more complex tasks (such as real
world scenarios), an error of zero is unlikely. To illustrate
this, consider the following toy example (which is trivial

as well, but does not yield an error of zero). You have two
sequences. In one case, the value of 1 predicts the value of
1, in the other case the value of 1 predicts the value of 0.
Both sequences are equally likely. Consequently, you
have two different target values (1 and 0). If you
iteratively train a neural network on this problem, it would
probably settle on a solution where 1 predicts the value
0.5 (because there is an equal amount of training examples
where 1 predicts 0 and those where 1 predicts 1). One
could also say that the network interpolates. Here, the
resulting error is not zero, because the network’s
prediction of 0.5 neither corresponds to the target of 0, nor
to the target of 1. Now consider that you have a multilayer
network with a large number of input units, hidden units
and output units. As a consequence, there are large weight
matrices interconnecting the layers. Each time a prediction
is contrasted with the target, the discrepancy between
prediction and target is used to adjust the weight matrices.
Hence, there is not just one error, but an error for each
discrepancy on each unit. As training progresses, the
errors on the individual units change. Hence, a
multidimensional error landscape results from training a
neural network by iteratively adjusting its
multidimensional weight matrix. The Backpropagation
algorithm that is typically applied to these networks
changes the weights in such a way that an error is
computed for every output unit, and the weights connected
to this unit are changed so that the error is reduced.
Because the error landscape is multidimensional,
however, it is not clear whether this weight change will
actually point in the direction of the global error
minimum. Hence, backpropagation poses the danger of
dipping from one local minimum into another (or even
getting stuck in a local minimum) without ever finding the
global minimum of error. This paper will describe an
approach to determine the global minimum of error.

Third, it will be shown that the information of knowing
the global error minimum is actually sufficient to replace
the training of the network (and its iterative weight
adjustments) by inferring the weight matrix right from the
start. Whilst this causes no problem for feedforward 2-
layer networks or multilayer perceptrons, the situation
becomes more difficult when using recurrent networks in
sequence learning applications. Nevertheless, a solution
will be discussed for recurrent neural networks as well.

Fourth, real-world and laboratory-based applications
will be discussed in the light of speeding-up the learning
process by inferring rather than by training weights.
Finally, it will be shown that the usual strength of neural

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 1

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

networks –which is generalizing to novel datasets- is not
sacrificed when replacing training by inference.
The approach described in this paper is one way of
relating Bayesian statistics to neural networks. This is by
far not the only way to make use of Bayes theorem in this
context. The way it is applied in this paper, however,
seems to have a number of practical benefits that are, to
the best of my knowledge, still unknown. David MacKay
and Radford Neal provide excellent summaries of the long
tradition to relate Bayes theorem to neural networks or to
nonlinear parametric models such multilayer perceptrons,
or to classification and regression problems [2]-[4]. Prior
to going into further details about Bayesian statistics and
neural networks, I will give a brief introduction to Bayes
theorem and the simple recurrent network. My
introduction to Bayes theorem is based on [1] and [5],
whilst my summary of the simple recurrent network is
based on [1] and [6].

Considering a space of hypotheses H, one often aims to
find the most probable hypothesis given the observed
training data D and given the knowledge of the prior
probabilities of hypotheses in H [5]. Referring to the
terminology of neural networks, the training data D are
usually training examples of a target function and H is the
space of target functions. Bayes theorem can compute the
posterior probability of a particular hypothesis h, P(h|D).
This is the probability that hypothesis h holds given the
observed training set D. This probability is dependent on
priors: The prior probability of hypothesis h, P(h), as well
as the prior probability that training data D will be
observed, P(D). This prior probability P(D) does not
incorporate any knowledge about which hypothesis h
holds. To compute the posterior probability P(h|D), it is
further necessary to know the probability that training data
D are observed given a situation in which hypothesis h
holds. This probability is expressed as P(D|h). Combining
these probabilities in Bayes theorem allows to calculate
the posterior probability P(h|D) [1], [5]:

)(
)()|()|(

DP
hPhDPDhP =

It is often necessary to find the maximally probable
hypothesis h ∈ H given the training set D or several
maximally probable hypotheses if there are two or more
hypotheses with equal probabilities. Maximally probable
hypotheses are called maximum a posteriori hypotheses.
When all of the hypotheses h ∈ H are equally probable a
priori, it is possible to simplify and skip P(h) to consider
the hypothesis that maximizes P(D|h) only. This
hypothesis is termed maximum likelihood hypothesis.
Tom Mitchell [5] was able to show that particular
learning algorithms (e.g. error correcting learning
algorithms in neural networks, linear regression and
polynomial curve fitting) will output maximum a
posteriori and maximum likelihood hypotheses:
“Bayesian analysis can sometimes be used to show that a
particular learning algorithm outputs MAP hypotheses
even though it [the algorithm] may not explicitly use
Bayes rule or calculate probabilities in any form … a
straightforward Bayesian analysis will show that under
certain assumptions any learning algorithm that
minimizes the squared error between the output

hypothesis predictions and the training data will output a
maximum likelihood hypothesis. The significance of this
result is that it provides a Bayesian justification … for
many neural network … methods…” (p. 164). These
methods include the simple recurrent network (SRN).
Having summarized Tom Mitchell’s earlier work, I now
refer to my research on the recurrent network. I will start
with a description of the SRN, [6]. The purpose of the
SRN is to learn sequences. The SRN receives input from
the input units and is trained to predict the next step of
the sequence at the output level (= next input being
represented as target). The SRN has recurrent (=copy-
back) connections from the hidden units to an extra layer
of context units. These context units store exact copies of
the hidden units, i.e. at the next step in the sequence, they
feed the hidden units with the hidden units’ activities
from one time step ago. So at the following time step, the
hidden units have input from the input units as well as
from the context units. The context units provide the
network with a dynamic memory, because each step in
the sequence they will have a different activation and
therefore different representation (resulting from all the
previous steps in the sequence). Depending on the
sequence position, the same inputs can therefore result in
alternative predictions of the network. The SRN is trained
with the previously mentioned backpropagation learning
algorithm. It is displayed in Figure 1.

 Output units (predict input =

target at time t+1)

weights 2

 Hidden units

weights 1
 copy

 Input units at time t Context units at time t-1

(1)

Fig. 1: The simple recurrent network.

Having provided a brief overview with respect to Bayes

theorem, how it can be related to neural networks and the
simple recurrent network, I will now refer to other
approaches where Bayes theorem was discussed with
regard to neural networks. Although the SRN is a
recurrent network (with copy-back connections from the
hidden to the context layer), its main learning principles
are somewhat reminiscent of feedforward networks, where
activity is fed in one direction (and only error is fed
backwards in order to adjust the weights). Following
MacKay [2], a feedforward network can be interpreted in
terms of a prior probability over nonlinear functions. In
addition, the network’s learning process can be viewed as
the posterior probability distribution over the unknown
function. These approaches do not make any direct use of
the global minimum of error, i.e. they do not apply this
information to reverse-engineer the weights (this is how
they differ from the approach that is explained in this
paper). Rather, they use other methods to estimate the

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 2

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

weight matrix: The two main approaches are David
MacKay’s Gaussian approximation method [3] and
Radford Neal’s Hamiltonian Monte Carlo method to
neural networks [4], which is also considered by David
MacKay [2]. Because a detailed summary of these
approaches already exists in the literature [2], only a brief
review will be given here.

I will start with the Hamiltonian Monte Carlo method,
and its sister version named Langevin Monte Carlo
method. It has to be kept in mind that this approach does
not replace but modify gradient descent. MacKay [2]
therefore summarizes it as “gradient descent with added
noise.” As mentioned before, its main aim is to estimate
rather than to reverse-engineer the weights. Similar to
backpropagation, a gradient is computed and the weights
are modified based on this gradient. Therefore, the
multidimensional error landscape also exists for this
method, and the way each weight is modified is based on
similar principles as the earlier described gradient-descent
operation. The way it differs from backpropagation,
however, is that a noise vector is added. This noise vector
is generated from a Gaussian. Subsequently, samples of
the weight matrix are generated and a Monte Carlo
approximation to the Bayesian predictions is obtained by
averaging together the functions that had resulted from
these samples. The result of this approach was that
Bayesian predictions found by the Langevin Monte Carlo
method were better than those predictions using optimized
parameters [2]. Langevin Monte Carlo’s big brother, the
Hamiltonian Monte Carlo, was further able to reduce
random walk in the multidimensional error landscape,
because it makes use of multiple gradient evaluations at
the same time.

The Gaussian approximation method [2]-[3] will be
considered next. Unlike backpropagation, Hamiltonian or
Langevin Monte Carlo, this approach does not make use
of gradient descent anymore. Its use of Bayesian processes
also differs from the way Bayesian predictions are
obtained in the Monte Carlo method. Rather, the Gaussian
approximation method aims at estimating the most
probable weights. It could also be expressed in the
following way: Let us assume the network tries to predict
the target. Now these are the weights to yield the output
closest to the target, or better expressed: These are the
most probable weights to yield this output. The question
arises how these weights can be estimated. In the
Gaussian Approximation method, an approximation to the
posterior probability is made, where a locally Gaussian
posterior probability distribution over each weight value is
assumed. Under this assumption the weights are Gaussian-
distributed, with mean wMP (=weight with the highest
probability) and variance-covariance matrix A-1. It could
be shown that the maximally probable output resulting
from the maximally probable weights and input values is
also normally distributed [2]. Since the maximally
probable output is the one closest to the target and since it
can be inferred from the mean of the Gaussian, and
because the output values are a function of the weights, it
is possible to compute the maximally probable weights.
Further research on Gaussian processes in relation to
neural networks can be found in [7]-[10].

Additional ways of using Bayes theorem in conjunction
with neural networks include the optimal network size
(e.g. networks with too many hidden units may generalize
poorly to new datasets). Ideas on Bayesian optimization

can be found in [2]. For more work on Bayes theorem and
neural networks see [11]-[14], for Bayes theorem and
recurrent neural networks in particular see [15]-[16].

BAYES THEOREM AND THE SRN II.
As summarized in the introduction, it had already been

shown that the output produced by recurrent neural
networks relying on gradient descent can be predicted by
Bayes theorem [1]. In this previous publication, this was
shown for applying a localist coding scheme of input and
target units (i.e. only one unit is activated at any one time
during training). Before demonstrating that this finding
can be extended to a distributed coding scheme as well, a
brief summary of these previous results will be given.
Only a toy problem will be described here, because the
full details can be found in [1]. Consider the two
sequences ABC and ABB. Now consider that A is coded
(1, 0, 0), B is coded (0, 1, 0) and C is coded (0, 0, 1).
Because the neural network cannot deal with strictly
binary representations [17], the localist coding scheme
was set to (0.9, 0.1, 0.1), (0.1, 0.9, 0.1) and (0.1, 0.1, 0.9)
respectively. These adjustments are common practice
among neural modelers [18]. After being trained on the
sequences ABC and ABB problem, the network predicts
(0.1, 0.9, 0.1) for the 2nd sequential step, because in 100
percent of the training examples, the letter B follows the
letter A. With regard to the 3rd step, however, the letters B
and C are equally likely (they both occur in 50 percent of
the training examples). Therefore, the network predicts
something close to (0.1, 0.5, 0.5). These predictions are
congruent with a Bayesian interpretation. Now imagine
the network is trained on ABA, ABB and ABC and all
three sequences are equally likely to occur during training.
In this case, the network predicts something close to
(0.3666, 0.3666, 0.3666). It does not predict 0.3333,
because the target values of 0.9, 0.1 and 0.1 add up to 1.1
(1.1 divided by 3 equals 0.3666, whilst the perfect binary
representation of 1, 0, 0 would add up to 1; only 1 divided
by 3 equals 0.3333). Nevertheless, these predictions are
still congruent with a Bayesian interpretation, which will
be explained below.

Considering a Bayesian interpretation, the version
space |VSH,D| plays a central role. This is the set of
hypotheses from the hypothesis space H that are
consistent with the training set D. Tom Mitchell writes (p.
162), [5]: “As training data accumulates, the posterior
probability for inconsistent hypotheses becomes zero
while the total probability summing to one is shared
equally among the remaining consistent hypotheses. The
above analysis implies that … every consistent hypothesis
has posterior probability (1/|VSH,D|), and every
inconsistent hypothesis has posterior probability of 0.“
With respect to the neural network and its continuous
target values of 0.9 and 0.1 in our example, the total
probability would not sum to 1, but to 1.1 (a probability is
defined by the borders 0 and 1, but since backpropagation
only approximates probabilities, an exception is made).
Everything else, however, would remain equal to
Mitchell’s statement on equivalence between Bayesian
learning and neural network learning. The following
equation is a formal way of expressing the citation on the
version space |VSH,D|, the prior probability that training
data D will be observed, and the prior probabilities of
hypothesis h for all hypotheses in the hypothesis space H:
P(h). Since it can be assumed that the probabilities of each

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 3

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

individual hypothesis accumulate to 1, the prior
probability of an individual hypothesis P(h) can be
expressed as 1/|H|. P(D) can be written |VSH,D|/|H|, which
follows from the theorem of total probability (see Mitchell
[5], p. 161). P(D|h) is either zero or one, depending on
whether h is consistent or inconsistent with the data in the
training set. If it is inconsistent, the numerator of the
posterior probability P(h|D) will be multiplied with zero,
which gives a posterior probability of zero. If it is
consistent with the training set, P(h|D) is calculated as
follows (see Mitchell [5], p. 161):

||
1

|H|
||
|H|

1*1

)(
|H|

1*1
)|(

)(
)()|()|(

DH,

DH,

VS

VS

DP
DhP

DP
hPhDPDhP

=

=

=

=

It will now be explained how these equations can be

related to a neural network. In the network, oi denotes the
activity of output unit i and εi denotes a noise term for
output unit i. The equivalent of the hypothesis space H
from Bayes Theorem is the number of possible competing
hypotheses C in the output vector o (in the localist coding
scheme this equals the number of vector components).
Thus, one can write 1/|C| for the neural network wherever
one writes 1/|H| in Bayes Theorem. The network’s
equivalent of the Version Space |VSH,D| (symbolizing the
set of hypotheses from the hypothesis space H being
consistent with the training data D) is the network’s
Version Space |VSC,T| (in the localist coding scheme this
symbolizes the number of active target vector components
C from the training set T that are presented to the network
at a particular step in the sequence, e.g. if the network was
trained on the sequences ABC and ABB, there would be a
“competition” between 2 different active vector
components at the third step in the sequence, (0, 0, 1), (0,
1, 0)). The equivalent of inconsistent hypotheses would be
hypotheses that are not represented in the training set, in
this example the vector (1, 0, 0) never appears at the third
step in the sequence. Consequently, the third vector
component would reveal a value of zero, because the
network’s equivalent of Bayes Theorem’s P(D|h), i.e.
P(T|c) would be zero. For the sequential steps consistent
with the training set, P(T|c) would reveal a value of 1, and
this example applies in Equation 3. After comparing
Equations 2 and 3, it becomes evident that both will
output equivalent results. The posterior probabilities in
Equation 2 might not exactly match the output activities in
Equation 3, but this would not change the network’s
Bayesian interpretation. Equation 2 would exactly match

the transitional probabilities (i.e. if there is one possible
sequential element to follow, it will be predicted with a
probability of 1, if there are two/three/four possible
elements to follow, they will be predicted with a
probability of 0.5/0.33/0.25). The result of Equation 3 will
not match these transitional probabilities exactly, because
there is a noise term and no strict binary values can be
applied. So if two different sequential elements are to
follow at the same position, there are the values 0.9 and
0.1 (they add up to 1, so both elements are predicted with
a probability of 0.5). However, if there are three different
sequential elements to follow at the same position, there
are the values 0.9, 0.1, 0.1 adding up to 1.1 (resulting in an
output activity of 0.3666 instead of 0.3333), if there are
four different sequential elements, the values 0.9, 0.1, 0.1,
0.1 add up to 1.2 (resulting in an activity of 0.3 instead of
0.25).

i

i

i

VS

VS

VS

cTP
i

ε

ε

εo

±=

±=

±=

||
1

|C|
||
|C|

1*1

|C|
||

|C|
1*)|(

TC,

TC,

TC,

(2)
(3)

Taking this aspect into account, however, the network

nevertheless reveals its equivalence to MAP-hypotheses.
Moreover, it would be possible to make a correction to the
network’s output. Having summarized the equivalence of
Bayesian learning and the learning of a neural network
with a localist coding scheme, I will now refer to new
simulations with a distributed coding scheme. In a
distributed coding scheme, input and target vectors take
on activities such as (0, 1, 1, 0, 1, 1, 1) or (0.1, 0.9, 0.9,
0.1, 0.9, 0.9, 0.9), e.g. there is more than one unit active
per input / target vector. Simulations have shown that the
output activities of the neural network can still be
predicted by relying on the previously mentioned ideas on
Bayes theorem [19]. This principle can be further
extended, e.g. when assigning continuous values to the
target vectors, e.g. (0.3, 0.8, 0.7, 0.5, 0.2, 0.2, 0.8).
Moreover, one could imagine that the same input is
associated with different target vectors, but that each
target vector has a different probability to be associated
with this input, e.g. take the toy problem where you have
the sequences ABA, ABB and ABC. Now imagine that
the sequential steps AB have already been presented to the
network. Then imagine that the target vector for A is
presented in only 5 percent of the training examples, the
target vector for B in 80 percent of the cases and the target
vector for C in the remaining 15 percent of training
examples. For demonstration purposes, I will again make
use of a toy problem: Assume letter A has the coding (0.7,
0.3, 0.4), letter B the coding (0.1, 0.8, 0.9), letter C the

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 4

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

coding (0.4, 0.1, 0.6). Once the sequence AB has occurred
and the task will be to predict the next letter, the output
based on statistics would be 0.05*0.7+0.8*0.1+0.15*0.4
for vector component 1 (the result for the 1st vector
component thus equals 0.175). Were all three sequences
equally likely to occur during training, the result for the 1st
vector component would have been (0.7+0.1+0.4) / 3 =
0.4. The output of the other two vector components is
computed in an equivalent manner. The 2nd vector
component yields an output of 0.67 in the case where
there is an unequal amount of training for all three
sequences and 0.4 in the case where there is an equal
amount of training for all three sequences. The 3rd vector
component yields 0.83 for the unequal amount of training
and 0.63 for the equal amount of training. Running
simulations on the simple recurrent network showed that
these predictions (which are purely due to statistical
regularities) were approximated very closely [19]. As a
result, it will be possible to predict the output of the neural
network even before it is trained on this problem. This can
be done because the network performs something like a
regression-task, where the discrepancy between output
values and target values becomes minimal. Certainly the
network often approximates the values predicted by the
statistical model without reaching them exactly (because
there is no guarantee that the global minimum of error is
reached). Nevertheless, when many simulations were run
and averaged over, the approximation of the network was
reasonably close to what had been predicted by statistics.
Going back to the Bayesian statistics method and
examining the discrepancy between the target values and
the output values in the neural network, it became clear
that the Bayesian predictions reached the global minimum
of error [19], whilst the network was never able to reach a
lower summed squared error (an explanation on how to
compute this error value is given in [17] and [20]). As a
consequence, the information inherent in statistics alone
will be sufficient to infer the best possible output of the
network after training (i.e. the output where the global
minimum of error is reached). Having found a way of
reaching the global minimum of error right away without
consuming resources for training and without the danger
of dipping into a local minimum, one might ask whether it
is possible to replace training completely. A similar
suggestion was already made by David MacKay [2], who
originally applied different methods, but came to the same
conclusion after studying feedforward networks (i.e.
networks that were not applied to sequential learning).
Because the simple recurrent network has a lot of
analogies to feedforward backpropagation networks (with
the only difference of having recurrent links from hidden
to context units), it is reassuring that the results and
conclusions overlapped.

REPLACING TRAINING III.
Because training consists of gradual weight changes

based on the discrepancy between target values and
output activities, it makes sense to assume that training
can be replaced when knowing the minimal discrepancy.
In this case, gradual weight changes in the direction of a
local or the global minimum might seem superfluous. If
the neural network does not have many units, it is
straightforward to infer a set of weights where the global
minimum of error is reached. If the network size is large,

it might be more complicated to infer a set of weights. In
any case, there is more than just one way to infer the
weights, so different possibilities will be demonstrated.
The first example deals with the common statistical
techniques Multiple Regression and Logistic Regression,
e.g. [21]-[24]. In Multiple Regression, the criterion
variable Ŷ is estimated by a linear function of the
observed values X times the regression coefficients wj
and an added constant w0. Its general form is displayed in
Equation 4.

Ŷ (4) ∑
=

+++=
J

j

jjXwXwXww
1

22110 ...

This function permits to determine the regression line,

which has the minimal discrepancy from the observed
values. In the neural network, this is analogous to a
function where the global minimum of error becomes
minimal. In other words, it is the bias value w0 and the
combination of weight values wj where the discrepancy
between target values and predicted output values is
minimal. Whilst multiple regression estimates the
criterion variable Ŷ, Bayesian statistics from our example
permits to compute the output values where the
discrepancy becomes minimal. Consequently, the
computed output values would reflect those values that
lie on the regression line in Multiple Regression.

Given that the predicted output values in the earlier
mentioned backpropagation algorithm are computed by
applying the (nonlinear) logistic activation function, the
statistical technique Logistic Regression probably shows
a better analogy to the network’s algorithm. Here we
replace the estimated criterion variable Ŷ with the logit z,
as displayed in Equation 5.

z (5) ∑
=

+++=
J

j

jjXwXwXww
1

22110 ...

Furthermore, we enter the logit z into the logistic

function L, containing Euler’s number (e=2.718), as
displayed in Equation 6.

ze−+
=

1
1L (6)

Consequently, the output is bounded between 0 and 1,

making it more analogous to the output in neural
networks that apply backpropagation as their algorithm.
Taking the examples of Multiple Regression and Logistic
Regression, it is easy to see how to reverse-engineer the
weights in a neural network such as the simple recurrent
network (see Figure 1). The output activities associated
with the global minimum of error are known after
computing them with the previously described Bayesian
statistics method. The input activities are given as well.
The weight set from the input to the hidden units is
initially set to random values (e.g. between -0.5 and 0.5).
This will give a set of activities on the hidden units. Each

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 5

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

step in the sequence, the activities on the hidden units are
fed back to the context units, which provide the hidden
units with input on the following sequential step. In the
beginning, the weights from context to hidden units are
also initialized with random values (e.g. once more
between -0.5 and 0.5). Due to the copy-back mechanism,
the hidden units have different activity values for each
step in the sequence. Consequently, every sequential step
is associated with a unique representation on the hidden
units, i.e. with different activities on the hidden units.
Given that we now know these values on the hidden units
for each sequential step, and given that we know the
output values where the global minimum of error is
reached for each step in the sequence, we are able to
linearly combine the weight values between the hidden
and output layer. They need to be combined in such a
way that those output activities are met where the global
minimum of error is reached. The biases on the output
units can also help in this regard. In the traditional
version of backpropagation and the SRN, there is exactly
one bias per output unit. An alternative way of dealing
with this problem would be to have one bias per
sequential step. This would increase the network’s values,
however, though it would make it even easier to find a
combination of weights and biases where the output
values with the global minimum of error are reached. It
might be asked what can be done if it turns out
impossible to find a combination of weights and biases
that exactly reach the needed output representation, e.g.
in case there are many similar and long sequences. One
way would be to increase the network’s size by raising
the number of hidden units (which would also make the
weight matrices bigger). What could also be done is to
predetermine the hidden units’ activity values in order to
make sure that they are different enough from each other
at every step in the sequence. Next, a combination of
weights between the chosen hidden units’ activities and
the required output units’ activities can be computed.
What follows then is to infer the weight values between
input units and hidden units and context units and hidden
units. Because the hidden units’ activities were
predetermined, the same holds true for the context units,
because they are the hidden units’ activities from the
previous time step (see Figure 1). The input units’
activities are given, so what needs to be done next is to
compute the weight matrix from input and context to
hidden in much the same way as has been done before
(when applying linear algebra to compute the weight
matrix from hidden to output). In the feedforward
network, it is also possible to infer the weight matrices
with David MacKay’s Gaussian processes approach [2].
In principle, this approach could also be extended to the
simple recurrent network (the exact method will not be
part of this paper, though). The following section will
discuss practical implications of replacing training by
inferring instant weight and bias values.

IV.

V.

PRACTICAL APPLICATIONS
It is worth considering the consequences of replacing

training with its gradual weight changes and no guarantee
to find the global minimum of error by inferring the
global minimum of error and reverse-engineering the
weights. First, a tremendous amount of time and
processing power could be saved. This is vital for tasks

that require a lot of time and processing power due to
their complexity, e.g. biomedical and bioinformatics
applications of protein folding [25]-[29]. Moreover, it
could be applied to forecasting operations, e.g. with
respect to energy load [30] or environmental matters [31],
language [32]-[34] or sign-language learning [35]-[41],
spatio-temporal operations such as pointing [42], spatial
response [43]-[47] or sound visualization [48]. In
principle, it can be extended to any sequence learning
problem where recurrent neural networks have been
applied. Given that it is also possible to infer weights for
large networks that require an extensive amount of
units/nodes and even millions of training trials, the
significance of this technique is that cost could be saved
and that more complex problems can be solved with the
same amount of cost or technical equipment.

CONCLUSIONS
Considering arguments in favor of neural networks and

gradient descent, it has often been mentioned that they are
able to generalize to novel input, e.g. that the gradual
change of weights has resulted in an inner representation
of the network that would it permit to deal with novel
input [17], [49]-[51]. One example of generalization is the
following sequence learning problem [45], [47]: the
network is trained on the sequences ABCBA, ABCCCBA,
ABCCCCBA, ABCCCCCCBA, ABBCBBA,
ABBCCCBBA, ABBCCCCBBA and
ABBCCCCCCBBA. In other words, the number of
intervening C elements during training is 1, 3, 4 and 6.
The number of B elements appearing before or after the C
elements is either 1 or 2. If it is 1 B before, there will be 1
B after the C elements. If there are 2 Bs before, there will
be 2 Bs after the C elements. If the network is given a new
sequence that has not been experienced during training,
e.g. with 2 or 5 C elements, it is still able to predict the
next sequential element once the first B has appeared after
the Cs. Although this or a related type of generalization is
typically considered a strength of neural networks
implementing gradient descent [45], [47], [49]-[51], there
is no reason to believe that it is due to gradient descent
itself. Inferring a set of weights that optimally fits the
training data by reaching the global minimum of error will
result in a similar or even better inner representation of the
training set. Consequently, gradient descent alone does no
magic by finding a combination of weights that represent
the training data. There are a range of statistical methods
that can infer a combination of weights representing the
training set. As it was pointed out by proponents of the
neural network approach [17], [49]-[51], all the
knowledge lies in the set of weights and biases. If it is
possible to find a combination of weights and biases
where the error between the target units and the actual
activations becomes sufficiently small, the network has
also reached an inner representation that it can benefit
from to generalize to new datasets [17], [49]-[51]. The
Bayesian statistics described in this paper do something
analogous to the neural network approach. They make use
of the same type of weight and bias matrices, but rather
than gradually adjusting the weights and biases to
minimize error by gradient descent, they infer those
weights and biases where error becomes minimal. So this
is where the only difference lies: Instead of slowly
adjusting weights/biases and consuming a lot of

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 6

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

technological resources to find a weight/bias set that
cannot even guarantee to reach the global minimum of
error, it rapidly infers a weight/bias set that guarantees the
global minimum of error. The rest remains equal to the
neural network approach, i.e. the ability to generalize
stays preserved due to having achieved weights/biases that
are associated with the minimal error. Moreover, this
Bayesian statistics approach has the additional advantage
of saving a significant amount of cost, which is vital for
biotechnological or energy-saving data sets, where the
number of units could become very large.

ACKNOWLEDGMENT
R.S. thanks David MacKay for comments and advice

when starting to develop this approach (April 2004). He
thanks Ernst Pöppel from the Institute of Medical
Psychology (LMU, Munich, Germany) for enabling him
to establish the Sensory-Motor Learning Lab (since 2004)
and Wolfson College Cambridge, University of
Cambridge (UK), for electing him a Fellow (2002 to
2006).

REFERENCES
[1] R. Spiegel, “Relating Bayesian learning to training in recurrent

networks,” Proc. of the IEEE International Joint Conference on
Neural Networks (IJCNN), vol. 2, pp. 908-913, July 2003.

[2] D.J.C. MacKay, Information theory, inference, and learning
algorithms. Cambridge: Cambridge University Press, 2003.

[3] D.J.C. MacKay, “Bayesian methods for adaptive models,” PhD-
thesis, California Institute of Technology (USA), 1991.

[4] R.M. Neal, Bayesian learning for neural networks. New York:
Springer, 1996.

[5] T.M. Mitchell, Machine learning. New York: McGraw-Hill, 1997.
[6] J.L. Elman, “Finding structure in time,” Cognitive Science, vol.

14, pp. 179-211, 1990.
[7] C.K.I. Williams and C.E. Rasmussen, “Gaussian processes for

regression,” in Advances in Neural Information Processing
Systems, vol. 8, Cambridge, MA: MIT-Press, 1996.

[8] R.M. Neal, “Monte Carlo implementation of Gaussian process
models for Bayesian regression and classification,” Technical
Report CRG-TR-97-2, Dept. of Computer Science, University of
Toronto, 1997.

[9] D. Barber and C.K.I. Williams, “Gaussian processes for Bayesian
classification via hybrid Monte Carlo,” in Advances in Neural
Information Processing Systems, vol. 9, Cambridge, MA: MIT-
Press, pp. 340-346, 1997.

[10] M. N. Gibbs and D.J.C. MacKay, “Variational Gaussian process
classifiers,” IEEE Transactions on Neural Networks, vol. 11,
1458-1464, 2000.

[11] E.A. Wan, “Neural network classification: a Bayesian
interpolation,” IEEE Transactions on Neural Networks, vol. 1, pp.
303-305, 1990.

[12] C.M. Bishop, Neural networks for pattern recognition, Oxford:
Oxford University Press, 1995.

[13] D.J.C. MacKay, “A practical Bayesian framework for
backpropagation networks,” Neural Computation, vol. 4, 448-472,
1992.

[14] S. Haykin, Neural networks. A comprehensive foundation. Upper
Saddle River, N.J.: Prentice-Hall, 1999.

[15] S. Santini and A. Del Bimbo, “Recurrent neural networks can be
trained to be maximum a posteriori probability classifiers,” Neural
Networks, vol. 8, 25-29, 1995.

[16] S. Santini, A. Del Bimbo and R. Jain, ”Block-structured recurrent
neural networks,” Neural Networks, vol. 8, 135-147, 1995.

[17] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning
internal representations by error propagation,” in Parallel

distributed processing, D.E. Rumelhart and J.L. McClelland, Eds.
Cambridge, MA: MIT-Press, vol. 1, pp. 318-362, 1986.

[18] Z. Dienes, G.T. Altmann and S.J. Gao, “Mapping across domains
without feedback: a neural network model of transfer of implicit
knowledge,” Cognitive Science, vol. 23, 53-82, 1999.

[19] R. Spiegel, “Predicting the output of a recurrent neural network
with a distributed coding scheme by relying on statistical
processes,” Software developed at the Department of
Experimental Psychology, University of Cambridge UK, January
2004.

[20] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning
representations by backpropagating errors,” Nature, vol. 323, pp.
533-536, October 1986.

[21] K. Backhaus, B. Erichson, W. Plinke and R. Weiber, Multivariate
Analysemethoden. Berlin: Springer, 2003.

[22] J. Schmidhuber, D. Wiestra and J. Gomez, “Evolino: Hybrid
neuroevolution / optimal linear search for sequence learning,“ in
Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 853-858, 2005.

[23] D. Wiestra, F. Gomez and J. Schmidhuber, “Modeling systems
with internal state using Evolino,“ in Proceedings of the 2005
Conference on Genetic and Evolutionary Computation (GECCO),
New York: ACM-Press, pp. 1795-1802, 2005.

[24] J. Schmidhuber, D. Wiestra and F. Gagliolo, “Training recurrent
networks by Evolino,“ Neural Computation, vol. 19, 757-779,
2007.

[25] S.M. Larson and V.S. Pande, “Sequence optimization for native
state stability determines the evolution and folding kinetics of a
small protein,” Journal of Molecular Biology, vol. 332, 275-286,
September 2003.

[26] S.M. Larson, J.L. England, J.R. Desjarlais and V.S. Pande,
“Thoroughly sampling sequence space: large-scale protein design
of structural ensembles,” Protein Science, vol. 11, 2804-2813,
December 2002.

[27] N. J. Marianayagam, N.L. Fawzi, T. Head-Gordon, “Protein
folding by distributed computing and the denatured state
ensemble,” Proceedings of the National Academy of Sciences, vol.
102, 16684-16689, Nobember 2005.

[28] E. Paci, A. Cavalli, M. Vendruscolo and A. Caflisch, “Analysis of
the distributed computing approach applied to the folding of a
small beta peptide,” Proceedings of the National Academy of
Sciences, vol. 100, 8217-8222, July 2003.

[29] M. Bodén and J. Hawkins, “Prediction of subcellular localisation
using sequence-biased recurrent networks,” Bioinformatics, vol.
21, 2279-2286, 2005.

[30] B. Kermanshahi, “Recurrent neural network for forecasting next
10 years loads of nine Japanese utilities,” Neurocomputing, vol.
23, 125-133, 1998.

[31] M. Cheroutre-Vialette and A. Lebert, “Application of recurrent
neural network to predict bacterial growth in dynamic conditions,”
International Journal of Food Microbiology, 73, 107-118, March
2002.

[32] S. Wu, I.H. Witten, A.W. Edwards, D.M. Nichols and R. Aquino,
“A digital library of language learning exercises,” International
Journal of Emerging Technologies in Learning, vol. 2(1), March
2007.

[33] R. Spiegel, “Cognitive modeling of symbolic-like relationships
with the adaptive neural network associator (ANNA),” Proc. IEEE
Int. Joint Conf. Neural Networks (IJCNN), 2003, vol. 4, pp. 2746-
2751.

[34] R. Spiegel, “A novel approach to extract rules from sequences of
phonemes,” Proc. Cambridge First Postgr. Conf. on Language
Research (CamLing), 2003, pp. 494-500.

[35] K.O. Nurzyńska and A. Duszeńko, “Interactive system for Polish
signed language learning,” International Journal of Emerging
Technologies in Learning, vol. 1(3), 2006.

[36] R. Spiegel, S. Naqvi, J. Ohene-Djan, D.R. Moore and E. Hsiao, “A
neuropsychological perspective on measuring sign language
learning and comprehension,“ International Journal of Emerging
Technologies in Learning, 2(1), March 2007.

[37] J. Ohene-Djan, J. Bassett-Cross, A. Mould and R. Zimmer,
“MAK-messenger and finger chat: communications technologies
to assist in the teaching of signed languages to the deaf and

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 7

BAYESIAN STATISTICS AS AN ALTERNATIVE TO GRADIENT DESCENT IN SEQUENCE LEARNING

hearing,” Proc. 4th IEEE Intern. Conf. Adv. Learn. Technologies,
Joensuu (Finland), 2004.

[46] R. Spiegel and I.P.L. McLaren, “Abstract and associatively-based
representations in human sequence learning,” Phil. Trans. Roy.
Soc. London, vol. B358, pp. 1277-1283, July 2003. [38] J. Ohene-Djan, R. Zimmer, M. Gorle and S. Naqvi, “A

personalisable electronic book for video-based sign language
education,” Educational Technology and Society, vol. 6, pp. 86-
99, October 2003.

[47] R. Spiegel and I.P.L. McLaren, “Associative sequence learning,“
J. Expt. Psychology: Animal Behavior Processes, vol. 32, pp.
150-163, April 2006.

[48] J. Azar, H. Abou Saleh, M. Adnan Al-Alaoui, “Sound
visualization for the hearing impaired,” International Journal of
Emerging Technologies in Learning, 2(1), March 2007.

[39] J. Ohene-Djan and R. Shipsey, “E-subtitles: emotional subtitles as
a technology to assist the deaf and hearing-impaired when learning
from television and film,” 6th IEEE Intern. Conf. Adv. Learning
Technologies (ICALT), Kerkrade (Holland): IEEE Computer
Society, pp. 464-66, July 2006.

[49] J.L. Elman, E. Bates, M.H. Johnson, A. Karmiloff-Smith, D. Parisi
and K. Plunkett, Rethinking Innateness: A Connectionist
Perspective on Development. Cambridge, MA: MIT-Press, 1996. [40] J. Ohene-Djan and S. Naqvi, “An adaptive www-based system to

teach British Sign Language,” Proc. 5th IEEE Intern. Conf. Adv.
Learning Technologies (ICALT), Kaohsiung (Taiwan): IEEE
Computer Society, pp. 575-79, July 2005.

[50] K. Plunkett and J.L. Elman, Exercises in Rethinking Innateness.
Cambridge, MA: MIT-Press, 1997.

[51] P. McLeod, K. Plunkett and E.T. Rolls, Introduction to
Connectionist Modelling of Cognitive Processes. Oxford: Oxford
University Press, 1998.

[41] S. Naqvi, J. Ohene-Djan and R. Spiegel, “Testing the effectiveness
of digital representations of sign language with children,”
Instructional Technology and Education of the Deaf Symposium,
Rochester, N.Y.: National Institute for the Deaf, pp. 1-7, June
2005.

AUTHORS [42] K. Jantz, G. Friedland and R. Rojas, “Ubiquitous pointing and
drawing,” International Journal of Emerging Technologies in
Learning, 2(1), March 2007.

R. Spiegel is with the Institute of Medical Psychology,
Ludwig-Maximilians University (LMU) and its affiliated
Generation Research Program Ltd., Goethestr. 31/1, D-
80336 Munich, Germany and with the Medical School of
the same university, e-mail:rainer.spiegel@campus.lmu.de
When carrying out the work presented in this paper, he
was at Wolfson College Cambridge, University of
Cambridge, United Kingdom (2002 to 2006).

[43] D.R. Moore, “Exploring gender effects on the spatial probability
measure,” in Proc. 5th IEEE Intern. Conf. on Advanced Learning
Technologies (ICALT), Athens (Greece): IEEE Computer Soc.,
2005, pp. 435-36.

[44] S. Naqvi, R. Spiegel, J. Ohene-Djan, D.R. Moore and E. Hsiao,
“Measuring sign language comprehension through spatial
response,“ in Proc. Conf. and Workshop on Assistive Technologies
for Vision and Hearing Impairment: Technology for Inclusion,
D.M. Hersh, Ed. Kufstein (Austria): euro-Assist-VHI-4, 2006.

[45] R. Spiegel, “Human and machine learning of spatio-temporal
sequences: an experimental and computational investigation,”
PhD-thesis, University of Cambridge (UK), 2002.

Manuscript received 22 April 2007.

Published as submitted by the author(s).

iJET International Journal of Emerging Technologies in Learning - www.i-jet.org 8

mailto:rainer.spiegel@campus.lmu.de

	I. Introduction
	II. Bayes theorem and the srn
	III. Replacing training
	IV. Practical applications
	V. CONCLUSIONS
	Acknowledgment
	References
	Authors

