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Abstract—Recurrent neural networks are frequently applied 
to simulate sequence learning applications such as language 
processing, sensory-motor learning, etc. For this purpose, 
they often apply a truncated gradient descent (=error 
correcting) learning algorithm. In order to converge to a 
solution that is congruent with a target set of sequences, 
many iterations of sequence presentations and weight 
adjustments are typically needed. Moreover, there is no 
guarantee of finding the global minimum of error in a 
multidimensional error landscape resulting from the 
discrepancy between target values and the network’s 
prediction. This paper presents a new approach of inferring 
the global error minimum right from the start. It further 
applies this information to reverse-engineer the weights. As 
a consequence, learning is speeded-up tremendously, whilst 
computationally-expensive iterative training trials can be 
skipped. Technology applications in established and 
emerging industries will be discussed. 

Index Terms—Gaussian processes, Error-correction, Bayes 
theorem, Sequential learning, Recurrent neural networks. 

I. INTRODUCTION 
This article has several aims: First, it will be shown that 

the output produced by recurrent neural networks relying 
on gradient descent can be predicted by applying Bayes 
theorem. In the past, this was demonstrated when taking a 
localist coding scheme to represent input and target values 
[1]. In a localist coding scheme, only one unit is active, 
whilst all other units are inactive, e.g. (1, 0, 0, 0, 0, 0, 0, 
…, 0). Now it will be shown that Bayes theorem can just 
as well predict the output after using a distributed coding 
scheme. In a distributed coding scheme, more than one 
unit is active, e.g. (1, 0, 1, 0, 0, 0, 1). This not only applies 
to distributed coding schemes with binary numbers, but 
also to those with continuous numbers, e.g. (0.9, 0.1, 0.3, 
0.1, 0.5, 0.8). 

Second, a statistical approach can be used to infer the 
global minimum of error in the multidimensional error 
landscape. If there is a discrepancy between the output 
value that the network predicts and the target value, an 
error is computed. In the optimal case, the discrepancy 
between predicted output and target should be zero, which 
would yield an error of zero. For trivial tasks this may 
work, but one might want to skip a neural network 
altogether if the task is so trivial that a target can be 
predicted easily. For more complex tasks (such as real 
world scenarios), an error of zero is unlikely. To illustrate 
this, consider the following toy example (which is trivial 

as well, but does not yield an error of zero). You have two 
sequences. In one case, the value of 1 predicts the value of 
1, in the other case the value of 1 predicts the value of 0. 
Both sequences are equally likely. Consequently, you 
have two different target values (1 and 0). If you 
iteratively train a neural network on this problem, it would 
probably settle on a solution where 1 predicts the value 
0.5 (because there is an equal amount of training examples 
where 1 predicts 0 and those where 1 predicts 1). One 
could also say that the network interpolates. Here, the 
resulting error is not zero, because the network’s 
prediction of 0.5 neither corresponds to the target of 0, nor 
to the target of 1. Now consider that you have a multilayer 
network with a large number of input units, hidden units 
and output units. As a consequence, there are large weight 
matrices interconnecting the layers. Each time a prediction 
is contrasted with the target, the discrepancy between 
prediction and target is used to adjust the weight matrices. 
Hence, there is not just one error, but an error for each 
discrepancy on each unit. As training progresses, the 
errors on the individual units change. Hence, a 
multidimensional error landscape results from training a 
neural network by iteratively adjusting its 
multidimensional weight matrix. The Backpropagation 
algorithm that is typically applied to these networks 
changes the weights in such a way that an error is 
computed for every output unit, and the weights connected 
to this unit are changed so that the error is reduced. 
Because the error landscape is multidimensional, 
however, it is not clear whether this weight change will 
actually point in the direction of the global error 
minimum. Hence, backpropagation poses the danger of 
dipping from one local minimum into another (or even 
getting stuck in a local minimum) without ever finding the 
global minimum of error. This paper will describe an 
approach to determine the global minimum of error. 

Third, it will be shown that the information of knowing 
the global error minimum is actually sufficient to replace 
the training of the network (and its iterative weight 
adjustments) by inferring the weight matrix right from the 
start. Whilst this causes no problem for feedforward 2-
layer networks or multilayer perceptrons, the situation 
becomes more difficult when using recurrent networks in 
sequence learning applications. Nevertheless, a solution 
will be discussed for recurrent neural networks as well. 

Fourth, real-world and laboratory-based applications 
will be discussed in the light of speeding-up the learning 
process by inferring rather than by training weights. 
Finally, it will be shown that the usual strength of neural 
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networks –which is generalizing to novel datasets- is not 
sacrificed when replacing training by inference. 
The approach described in this paper is one way of 
relating Bayesian statistics to neural networks. This is by 
far not the only way to make use of Bayes theorem in this 
context. The way it is applied in this paper, however, 
seems to have a number of practical benefits that are, to 
the best of my knowledge, still unknown. David MacKay 
and Radford Neal provide excellent summaries of the long 
tradition to relate Bayes theorem to neural networks or to 
nonlinear parametric models such multilayer perceptrons, 
or to classification and regression problems [2]-[4]. Prior 
to going into further details about Bayesian statistics and 
neural networks, I will give a brief introduction to Bayes 
theorem and the simple recurrent network. My 
introduction to Bayes theorem is based on [1] and [5], 
whilst my summary of the simple recurrent network is 
based on [1] and [6].  

Considering a space of hypotheses H, one often aims to 
find the most probable hypothesis given the observed 
training data D and given the knowledge of the prior 
probabilities of hypotheses in H [5]. Referring to the 
terminology of neural networks, the training data D are 
usually training examples of a target function and H is the 
space of target functions. Bayes theorem can compute the 
posterior probability of a particular hypothesis h, P(h|D). 
This is the probability that hypothesis h holds given the 
observed training set D. This probability is dependent on 
priors: The prior probability of hypothesis h, P(h), as well 
as the prior probability that training data D will be 
observed, P(D). This prior probability P(D) does not 
incorporate any knowledge about which hypothesis h 
holds. To compute the posterior probability P(h|D), it is 
further necessary to know the probability that training data 
D are observed given a situation in which hypothesis h 
holds. This probability is expressed as P(D|h). Combining 
these probabilities in Bayes theorem allows to calculate 
the posterior probability P(h|D) [1], [5]: 
 

)(
)()|()|(

DP
hPhDPDhP =  

 
It is often necessary to find the maximally probable 
hypothesis h ∈ H given the training set D or several 
maximally probable hypotheses if there are two or more 
hypotheses with equal probabilities. Maximally probable 
hypotheses are called maximum a posteriori hypotheses. 
When all of the hypotheses h ∈ H are equally probable a 
priori, it is possible to simplify and skip P(h) to consider 
the hypothesis that maximizes P(D|h) only. This 
hypothesis is termed maximum likelihood hypothesis. 
Tom Mitchell [5] was able to show that particular 
learning algorithms (e.g. error correcting learning 
algorithms in neural networks, linear regression and 
polynomial curve fitting) will output maximum a 
posteriori and maximum likelihood hypotheses: 
“Bayesian analysis can sometimes be used to show that a 
particular learning algorithm outputs MAP hypotheses 
even though it [the algorithm] may not explicitly use 
Bayes rule or calculate probabilities in any form … a 
straightforward Bayesian analysis will show that under 
certain assumptions any learning algorithm that 
minimizes the squared error between the output 

hypothesis predictions and the training data will output a 
maximum likelihood hypothesis. The significance of this 
result is that it provides a Bayesian justification … for 
many neural network … methods…” (p. 164). These 
methods include the simple recurrent network (SRN). 
Having summarized Tom Mitchell’s earlier work, I now 
refer to my research on the recurrent network. I will start 
with a description of the SRN, [6]. The purpose of the 
SRN is to learn sequences. The SRN receives input from 
the input units and is trained to predict the next step of 
the sequence at the output level (= next input being 
represented as target). The SRN has recurrent (=copy-
back) connections from the hidden units to an extra layer 
of context units. These context units store exact copies of 
the hidden units, i.e. at the next step in the sequence, they 
feed the hidden units with the hidden units’ activities 
from one time step ago. So at the following time step, the 
hidden units have input from the input units as well as 
from the context units. The context units provide the 
network with a dynamic memory, because each step in 
the sequence they will have a different activation and 
therefore different representation (resulting from all the 
previous steps in the sequence). Depending on the 
sequence position, the same inputs can therefore result in 
alternative predictions of the network. The SRN is trained 
with the previously mentioned backpropagation learning 
algorithm. It is displayed in Figure 1. 
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Fig. 1:  The simple recurrent network. 

 
Having provided a brief overview with respect to Bayes 

theorem, how it can be related to neural networks and the 
simple recurrent network, I will now refer to other 
approaches where Bayes theorem was discussed with 
regard to neural networks. Although the SRN is a 
recurrent network (with copy-back connections from the 
hidden to the context layer), its main learning principles 
are somewhat reminiscent of feedforward networks, where 
activity is fed in one direction (and only error is fed 
backwards in order to adjust the weights). Following 
MacKay [2], a feedforward network can be interpreted in 
terms of a prior probability over nonlinear functions. In 
addition, the network’s learning process can be viewed as 
the posterior probability distribution over the unknown 
function. These approaches do not make any direct use of 
the global minimum of error, i.e. they do not apply this 
information to reverse-engineer the weights (this is how 
they differ from the approach that is explained in this 
paper). Rather, they use other methods to estimate the 
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weight matrix: The two main approaches are David 
MacKay’s Gaussian approximation method [3] and 
Radford Neal’s Hamiltonian Monte Carlo method to 
neural networks [4], which is also considered by David 
MacKay [2]. Because a detailed summary of these 
approaches already exists in the literature [2], only a brief 
review will be given here. 

I will start with the Hamiltonian Monte Carlo method, 
and its sister version named Langevin Monte Carlo 
method. It has to be kept in mind that this approach does 
not replace but modify gradient descent. MacKay [2] 
therefore summarizes it as “gradient descent with added 
noise.” As mentioned before, its main aim is to estimate 
rather than to reverse-engineer the weights. Similar to 
backpropagation, a gradient is computed and the weights 
are modified based on this gradient. Therefore, the 
multidimensional error landscape also exists for this 
method, and the way each weight is modified is based on 
similar principles as the earlier described gradient-descent 
operation. The way it differs from backpropagation, 
however, is that a noise vector is added. This noise vector 
is generated from a Gaussian. Subsequently, samples of 
the weight matrix are generated and a Monte Carlo 
approximation to the Bayesian predictions is obtained by 
averaging together the functions that had resulted from 
these samples. The result of this approach was that 
Bayesian predictions found by the Langevin Monte Carlo 
method were better than those predictions using optimized 
parameters [2]. Langevin Monte Carlo’s big brother, the 
Hamiltonian Monte Carlo, was further able to reduce 
random walk in the multidimensional error landscape, 
because it makes use of multiple gradient evaluations at 
the same time.  

The Gaussian approximation method [2]-[3] will be 
considered next. Unlike backpropagation, Hamiltonian or 
Langevin Monte Carlo, this approach does not make use 
of gradient descent anymore. Its use of Bayesian processes 
also differs from the way Bayesian predictions are 
obtained in the Monte Carlo method. Rather, the Gaussian 
approximation method aims at estimating the most 
probable weights. It could also be expressed in the 
following way: Let us assume the network tries to predict 
the target. Now these are the weights to yield the output 
closest to the target, or better expressed: These are the 
most probable weights to yield this output. The question 
arises how these weights can be estimated. In the 
Gaussian Approximation method, an approximation to the 
posterior probability is made, where a locally Gaussian 
posterior probability distribution over each weight value is 
assumed. Under this assumption the weights are Gaussian-
distributed, with mean wMP (=weight with the highest 
probability) and variance-covariance matrix A-1. It could 
be shown that the maximally probable output resulting 
from the maximally probable weights and input values is 
also normally distributed [2]. Since the maximally 
probable output is the one closest to the target and since it 
can be inferred from the mean of the Gaussian, and 
because the output values are a function of the weights, it 
is possible to compute the maximally probable weights. 
Further research on Gaussian processes in relation to 
neural networks can be found in [7]-[10]. 

Additional ways of using Bayes theorem in conjunction 
with neural networks include the optimal network size 
(e.g. networks with too many hidden units may generalize 
poorly to new datasets). Ideas on Bayesian optimization 

can be found in [2]. For more work on Bayes theorem and 
neural networks see [11]-[14], for Bayes theorem and 
recurrent neural networks in particular see [15]-[16]. 

BAYES THEOREM AND THE SRN II. 
As summarized in the introduction, it had already been 

shown that the output produced by recurrent neural 
networks relying on gradient descent can be predicted by 
Bayes theorem [1]. In this previous publication, this was 
shown for applying a localist coding scheme of input and 
target units (i.e. only one unit is activated at any one time 
during training). Before demonstrating that this finding 
can be extended to a distributed coding scheme as well, a 
brief summary of these previous results will be given. 
Only a toy problem will be described here, because the 
full details can be found in [1]. Consider the two 
sequences ABC and ABB. Now consider that A is coded 
(1, 0, 0), B is coded (0, 1, 0) and C is coded (0, 0, 1). 
Because the neural network cannot deal with strictly 
binary representations [17], the localist coding scheme 
was set to (0.9, 0.1, 0.1), (0.1, 0.9, 0.1) and (0.1, 0.1, 0.9) 
respectively. These adjustments are common practice 
among neural modelers [18]. After being trained on the 
sequences ABC and ABB problem, the network predicts 
(0.1, 0.9, 0.1) for the 2nd sequential step, because in 100 
percent of the training examples, the letter B follows the 
letter A. With regard to the 3rd step, however, the letters B 
and C are equally likely (they both occur in 50 percent of 
the training examples). Therefore, the network predicts 
something close to (0.1, 0.5, 0.5). These predictions are 
congruent with a Bayesian interpretation. Now imagine 
the network is trained on ABA, ABB and ABC and all 
three sequences are equally likely to occur during training. 
In this case, the network predicts something close to 
(0.3666, 0.3666, 0.3666). It does not predict 0.3333, 
because the target values of 0.9, 0.1 and 0.1 add up to 1.1 
(1.1 divided by 3 equals 0.3666, whilst the perfect binary 
representation of 1, 0, 0 would add up to 1; only 1 divided 
by 3 equals 0.3333). Nevertheless, these predictions are 
still congruent with a Bayesian interpretation, which will 
be explained below. 

Considering a Bayesian interpretation, the version 
space |VSH,D| plays a central role. This is the set of 
hypotheses from the hypothesis space H that are 
consistent with the training set D. Tom Mitchell writes (p. 
162), [5]: “As training data accumulates, the posterior 
probability for inconsistent hypotheses becomes zero 
while the total probability summing to one is shared 
equally among the remaining consistent hypotheses. The 
above analysis implies that … every consistent hypothesis 
has posterior probability (1/|VSH,D|), and every 
inconsistent hypothesis has posterior probability of 0.“ 
With respect to the neural network and its continuous 
target values of 0.9 and 0.1 in our example, the total 
probability would not sum to 1, but to 1.1 (a probability is 
defined by the borders 0 and 1, but since backpropagation 
only approximates probabilities, an exception is made). 
Everything else, however, would remain equal to 
Mitchell’s statement on equivalence between Bayesian 
learning and neural network learning. The following 
equation is a formal way of expressing the citation on the 
version space |VSH,D|, the prior probability that training 
data D will be observed, and the prior probabilities of 
hypothesis h for all hypotheses in the hypothesis space H: 
P(h). Since it can be assumed that the probabilities of each 
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individual hypothesis accumulate to 1, the prior 
probability of an individual hypothesis P(h) can be 
expressed as 1/|H|. P(D) can be written |VSH,D|/|H|, which 
follows from the theorem of total probability (see Mitchell 
[5], p. 161). P(D|h) is either zero or one, depending on 
whether h is consistent or inconsistent with the data in the 
training set. If it is inconsistent, the numerator of the 
posterior probability P(h|D) will be multiplied with zero, 
which gives a posterior probability of zero. If it is 
consistent with the training set, P(h|D) is calculated as 
follows (see Mitchell [5], p. 161): 
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It will now be explained how these equations can be 

related to a neural network. In the network, oi denotes the 
activity of output unit i and εi denotes a noise term for 
output unit i. The equivalent of the hypothesis space H 
from Bayes Theorem is the number of possible competing 
hypotheses C in the output vector o (in the localist coding 
scheme this equals the number of vector components). 
Thus, one can write 1/|C| for the neural network wherever 
one writes 1/|H| in Bayes Theorem. The network’s 
equivalent of the Version Space |VSH,D| (symbolizing the 
set of hypotheses from the hypothesis space H being 
consistent with the training data D) is the network’s 
Version Space |VSC,T| (in the localist coding scheme this 
symbolizes the number of active target vector components 
C from the training set T that are presented to the network 
at a particular step in the sequence, e.g. if the network was 
trained on the sequences ABC and ABB, there would be a 
“competition” between 2 different active vector 
components at the third step in the sequence, (0, 0, 1), (0, 
1, 0)). The equivalent of inconsistent hypotheses would be 
hypotheses that are not represented in the training set, in 
this example the vector (1, 0, 0) never appears at the third 
step in the sequence. Consequently, the third vector 
component would reveal a value of zero, because the 
network’s equivalent of Bayes Theorem’s P(D|h), i.e. 
P(T|c) would be zero. For the sequential steps consistent 
with the training set, P(T|c) would reveal a value of 1, and 
this example applies in Equation 3. After comparing 
Equations 2 and 3, it becomes evident that both will 
output equivalent results. The posterior probabilities in 
Equation 2 might not exactly match the output activities in 
Equation 3, but this would not change the network’s 
Bayesian interpretation. Equation 2 would exactly match 

the transitional probabilities (i.e. if there is one possible 
sequential element to follow, it will be predicted with a 
probability of 1, if there are two/three/four possible 
elements to follow, they will be predicted with a 
probability of 0.5/0.33/0.25). The result of Equation 3 will 
not match these transitional probabilities exactly, because 
there is a noise term and no strict binary values can be 
applied. So if two different sequential elements are to 
follow at the same position, there are the values 0.9 and 
0.1 (they add up to 1, so both elements are predicted with 
a probability of 0.5). However, if there are three different 
sequential elements to follow at the same position, there 
are the values 0.9, 0.1, 0.1 adding up to 1.1 (resulting in an 
output activity of 0.3666 instead of 0.3333), if there are 
four different sequential elements, the values 0.9, 0.1, 0.1, 
0.1 add up to 1.2 (resulting in an activity of 0.3 instead of 
0.25). 
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Taking this aspect into account, however, the network 

nevertheless reveals its equivalence to MAP-hypotheses. 
Moreover, it would be possible to make a correction to the 
network’s output. Having summarized the equivalence of 
Bayesian learning and the learning of a neural network 
with a localist coding scheme, I will now refer to new 
simulations with a distributed coding scheme. In a 
distributed coding scheme, input and target vectors take 
on activities such as (0, 1, 1, 0, 1, 1, 1) or (0.1, 0.9, 0.9, 
0.1, 0.9, 0.9, 0.9), e.g. there is more than one unit active 
per input / target vector. Simulations have shown that the 
output activities of the neural network can still be 
predicted by relying on the previously mentioned ideas on 
Bayes theorem [19]. This principle can be further 
extended, e.g. when assigning continuous values to the 
target vectors, e.g. (0.3, 0.8, 0.7, 0.5, 0.2, 0.2, 0.8). 
Moreover, one could imagine that the same input is 
associated with different target vectors, but that each 
target vector has a different probability to be associated 
with this input, e.g. take the toy problem where you have 
the sequences ABA, ABB and ABC. Now imagine that 
the sequential steps AB have already been presented to the 
network. Then imagine that the target vector for A is 
presented in only 5 percent of the training examples, the 
target vector for B in 80 percent of the cases and the target 
vector for C in the remaining 15 percent of training 
examples. For demonstration purposes, I will again make 
use of a toy problem: Assume letter A has the coding (0.7, 
0.3, 0.4), letter B the coding (0.1, 0.8, 0.9), letter C the 
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coding (0.4, 0.1, 0.6). Once the sequence AB has occurred 
and the task will be to predict the next letter, the output 
based on statistics would be 0.05*0.7+0.8*0.1+0.15*0.4 
for vector component 1 (the result for the 1st vector 
component thus equals 0.175). Were all three sequences 
equally likely to occur during training, the result for the 1st 
vector component would have been (0.7+0.1+0.4) / 3 = 
0.4. The output of the other two vector components is 
computed in an equivalent manner. The 2nd vector 
component yields an output of 0.67 in the case where 
there is an unequal amount of training for all three 
sequences and 0.4 in the case where there is an equal 
amount of training for all three sequences. The 3rd vector 
component yields 0.83 for the unequal amount of training 
and 0.63 for the equal amount of training. Running 
simulations on the simple recurrent network showed that 
these predictions (which are purely due to statistical 
regularities) were approximated very closely [19]. As a 
result, it will be possible to predict the output of the neural 
network even before it is trained on this problem. This can 
be done because the network performs something like a 
regression-task, where the discrepancy between output 
values and target values becomes minimal. Certainly the 
network often approximates the values predicted by the 
statistical model without reaching them exactly (because 
there is no guarantee that the global minimum of error is 
reached). Nevertheless, when many simulations were run 
and averaged over, the approximation of the network was 
reasonably close to what had been predicted by statistics. 
Going back to the Bayesian statistics method and 
examining the discrepancy between the target values and 
the output values in the neural network, it became clear 
that the Bayesian predictions reached the global minimum 
of error [19], whilst the network was never able to reach a 
lower summed squared error (an explanation on how to 
compute this error value is given in [17] and [20]). As a 
consequence, the information inherent in statistics alone 
will be sufficient to infer the best possible output of the 
network after training (i.e. the output where the global 
minimum of error is reached). Having found a way of 
reaching the global minimum of error right away without 
consuming resources for training and without the danger 
of dipping into a local minimum, one might ask whether it 
is possible to replace training completely. A similar 
suggestion was already made by David MacKay [2], who 
originally applied different methods, but came to the same 
conclusion after studying feedforward networks (i.e. 
networks that were not applied to sequential learning). 
Because the simple recurrent network has a lot of 
analogies to feedforward backpropagation networks (with 
the only difference of having recurrent links from hidden 
to context units), it is reassuring that the results and 
conclusions overlapped. 

 

REPLACING TRAINING III. 
Because training consists of gradual weight changes 

based on the discrepancy between target values and 
output activities, it makes sense to assume that training 
can be replaced when knowing the minimal discrepancy. 
In this case, gradual weight changes in the direction of a 
local or the global minimum might seem superfluous. If 
the neural network does not have many units, it is 
straightforward to infer a set of weights where the global 
minimum of error is reached. If the network size is large, 

it might be more complicated to infer a set of weights. In 
any case, there is more than just one way to infer the 
weights, so different possibilities will be demonstrated. 
The first example deals with the common statistical 
techniques Multiple Regression and Logistic Regression, 
e.g. [21]-[24]. In Multiple Regression, the criterion 
variable Ŷ is estimated by a linear function of the 
observed values X times the regression coefficients wj 
and an added constant w0. Its general form is displayed in 
Equation 4. 

 

Ŷ  (4) ∑
=
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This function permits to determine the regression line, 

which has the minimal discrepancy from the observed 
values. In the neural network, this is analogous to a 
function where the global minimum of error becomes 
minimal. In other words, it is the bias value w0 and the 
combination of weight values wj where the discrepancy 
between target values and predicted output values is 
minimal. Whilst multiple regression estimates the 
criterion variable Ŷ, Bayesian statistics from our example 
permits to compute the output values where the 
discrepancy becomes minimal. Consequently, the 
computed output values would reflect those values that 
lie on the regression line in Multiple Regression. 

Given that the predicted output values in the earlier 
mentioned backpropagation algorithm are computed by 
applying the (nonlinear) logistic activation function, the 
statistical technique Logistic Regression probably shows 
a better analogy to the network’s algorithm. Here we 
replace the estimated criterion variable Ŷ with the logit z, 
as displayed in Equation 5. 

 

z   (5) ∑
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Furthermore, we enter the logit z into the logistic 

function L, containing Euler’s number (e=2.718), as 
displayed in Equation 6. 

 

ze−+
=

1
1L     (6) 

 
Consequently, the output is bounded between 0 and 1, 

making it more analogous to the output in neural 
networks that apply backpropagation as their algorithm. 
Taking the examples of Multiple Regression and Logistic 
Regression, it is easy to see how to reverse-engineer the 
weights in a neural network such as the simple recurrent 
network (see Figure 1). The output activities associated 
with the global minimum of error are known after 
computing them with the previously described Bayesian 
statistics method. The input activities are given as well. 
The weight set from the input to the hidden units is 
initially set to random values (e.g. between -0.5 and 0.5). 
This will give a set of activities on the hidden units. Each 
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step in the sequence, the activities on the hidden units are 
fed back to the context units, which provide the hidden 
units with input on the following sequential step. In the 
beginning, the weights from context to hidden units are 
also initialized with random values (e.g. once more 
between -0.5 and 0.5). Due to the copy-back mechanism, 
the hidden units have different activity values for each 
step in the sequence. Consequently, every sequential step 
is associated with a unique representation on the hidden 
units, i.e. with different activities on the hidden units. 
Given that we now know these values on the hidden units 
for each sequential step, and given that we know the 
output values where the global minimum of error is 
reached for each step in the sequence, we are able to 
linearly combine the weight values between the hidden 
and output layer. They need to be combined in such a 
way that those output activities are met where the global 
minimum of error is reached. The biases on the output 
units can also help in this regard. In the traditional 
version of backpropagation and the SRN, there is exactly 
one bias per output unit. An alternative way of dealing 
with this problem would be to have one bias per 
sequential step. This would increase the network’s values, 
however, though it would make it even easier to find a 
combination of weights and biases where the output 
values with the global minimum of error are reached. It 
might be asked what can be done if it turns out 
impossible to find a combination of weights and biases 
that exactly reach the needed output representation, e.g. 
in case there are many similar and long sequences. One 
way would be to increase the network’s size by raising 
the number of hidden units (which would also make the 
weight matrices bigger). What could also be done is to 
predetermine the hidden units’ activity values in order to 
make sure that they are different enough from each other 
at every step in the sequence. Next, a combination of 
weights between the chosen hidden units’ activities and 
the required output units’ activities can be computed. 
What follows then is to infer the weight values between 
input units and hidden units and context units and hidden 
units. Because the hidden units’ activities were 
predetermined, the same holds true for the context units, 
because they are the hidden units’ activities from the 
previous time step (see Figure 1). The input units’ 
activities are given, so what needs to be done next is to 
compute the weight matrix from input and context to 
hidden in much the same way as has been done before 
(when applying linear algebra to compute the weight 
matrix from hidden to output). In the feedforward 
network, it is also possible to infer the weight matrices 
with David MacKay’s Gaussian processes approach [2]. 
In principle, this approach could also be extended to the 
simple recurrent network (the exact method will not be 
part of this paper, though). The following section will 
discuss practical implications of replacing training by 
inferring instant weight and bias values. 

 

IV. 

V. 

PRACTICAL APPLICATIONS 
It is worth considering the consequences of replacing 

training with its gradual weight changes and no guarantee 
to find the global minimum of error by inferring the 
global minimum of error and reverse-engineering the 
weights. First, a tremendous amount of time and 
processing power could be saved. This is vital for tasks 

that require a lot of time and processing power due to 
their complexity, e.g. biomedical and bioinformatics 
applications of protein folding [25]-[29]. Moreover, it 
could be applied to forecasting operations, e.g. with 
respect to energy load [30] or environmental matters [31], 
language [32]-[34] or sign-language learning [35]-[41], 
spatio-temporal operations such as pointing [42], spatial 
response [43]-[47] or sound visualization [48]. In 
principle, it can be extended to any sequence learning 
problem where recurrent neural networks have been 
applied. Given that it is also possible to infer weights for 
large networks that require an extensive amount of 
units/nodes and even millions of training trials, the 
significance of this technique is that cost could be saved 
and that more complex problems can be solved with the 
same amount of cost or technical equipment. 

 

CONCLUSIONS  
Considering arguments in favor of neural networks and 

gradient descent, it has often been mentioned that they are 
able to generalize to novel input, e.g. that the gradual 
change of weights has resulted in an inner representation 
of the network that would it permit to deal with novel 
input [17], [49]-[51]. One example of generalization is the 
following sequence learning problem [45], [47]: the 
network is trained on the sequences ABCBA, ABCCCBA, 
ABCCCCBA, ABCCCCCCBA, ABBCBBA, 
ABBCCCBBA, ABBCCCCBBA and 
ABBCCCCCCBBA. In other words, the number of 
intervening C elements during training is 1, 3, 4 and 6. 
The number of B elements appearing before or after the C 
elements is either 1 or 2. If it is 1 B before, there will be 1 
B after the C elements. If there are 2 Bs before, there will 
be 2 Bs after the C elements. If the network is given a new 
sequence that has not been experienced during training, 
e.g. with 2 or 5 C elements, it is still able to predict the 
next sequential element once the first B has appeared after 
the Cs. Although this or a related type of generalization is 
typically considered a strength of neural networks 
implementing gradient descent [45], [47], [49]-[51], there 
is no reason to believe that it is due to gradient descent 
itself. Inferring a set of weights that optimally fits the 
training data by reaching the global minimum of error will 
result in a similar or even better inner representation of the 
training set. Consequently, gradient descent alone does no 
magic by finding a combination of weights that represent 
the training data. There are a range of statistical methods 
that can infer a combination of weights representing the 
training set. As it was pointed out by proponents of the 
neural network approach [17], [49]-[51], all the 
knowledge lies in the set of weights and biases. If it is 
possible to find a combination of weights and biases 
where the error between the target units and the actual 
activations becomes sufficiently small, the network has 
also reached an inner representation that it can benefit 
from to generalize to new datasets [17], [49]-[51]. The 
Bayesian statistics described in this paper do something 
analogous to the neural network approach. They make use 
of the same type of weight and bias matrices, but rather 
than gradually adjusting the weights and biases to 
minimize error by gradient descent, they infer those 
weights and biases where error becomes minimal. So this 
is where the only difference lies: Instead of slowly 
adjusting weights/biases and consuming a lot of 
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technological resources to find a weight/bias set that 
cannot even guarantee to reach the global minimum of 
error, it rapidly infers a weight/bias set that guarantees the 
global minimum of error. The rest remains equal to the 
neural network approach, i.e. the ability to generalize 
stays preserved due to having achieved weights/biases that 
are associated with the minimal error. Moreover, this 
Bayesian statistics approach has the additional advantage 
of saving a significant amount of cost, which is vital for 
biotechnological or energy-saving data sets, where the 
number of units could become very large. 
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