
DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

Design of a Flexible and Adaptable LMS Engine
in Conformance with PoEML

doi:10.3991/ijet.v4s1.799

Roberto Perez-Rodriguez, Manuel Caeiro-Rodriguez and Luis Anido-Rifon
University of Vigo, Spain

Abstract—This paper describes the support of the
Structural, Functional, Order and Temporal perspectives in
PoEML. PoEML is a modeling language devoted to support
a broad range of pedagogical approaches, from content-
based, to collaborative and practical oriented. At this point,
a main issue is to provide a good level of adaptability and
flexibility. The final goal is to support changes in the
educational process development, enabling the provision of
different learning experiences depending on the learning
goals, the learner needs and features, the previous results,
etc. The introduced solution is based on the separation of
concerns principle adopted in PoEML. Basically, the
solution facilitates the use of a set of educational resources
in different ways by separating the form in which such
resources are organized (Structural perspective) from the
decisions of what has to be done (Functional perspective)
and when (Order and Temporal perspectives).

Index Terms—e-learning, PoEML, Workflow

I. INTRODUCTION
During our university lives, both as learners and

teachers, we have found several times ourselves in front of
an impressive and voluminous book involving a very large
amount of contents. The human knowledge in some areas
is quite impressive and these books try to provide a broad
(in some ways “biblical”) compilation of such knowledge.
Nevertheless, the contents provided are usually excessive
for the common academic needs of a one semester subject.
This situation is so common that this kind of “biblical”
books usually contains a description of several paths or
itineraries along the book chapters focused in certain
specific topics. For example, in a book about software
engineering we could find itineraries such as: structured
analysis and programming; software development
process; error control and testing; etc. In addition, the
book description may also include some constraints,
requiring that before initiating a certain chapter another
chapter should be read. Eventually, when this kind of
book is used in a university subject, it is quite common
that a professor performs a selection of chapters in order
to fulfill the subject goals, satisfying more or less some of
the suggested itineraries and constraints. In addition, the
teacher usually performs a temporal planning of the
selected chapters.

Currently, the e-learning domain does not involve the
management of large compilations of resources, as in
those large academic books. Nevertheless, it involves
reusability and adaptability requirements that demand
similar solutions. Reusability and adaptability are two
main concerns in the development of e-learning solutions.
In accordance with the SCORM specification [2]

reusability is defined as the flexibility to incorporate
instructional components in multiple applications and
contexts. Meanwhile, adaptability is defined as the ability
to tailor instruction to individual and organizational needs.
Therefore, from our point of view, these concerns are
demanding similar solutions to the itineraries, constraints
and professors’ plans using large academic books. The
common requirements are: (i) to support the aggregation
of numerous contents; (ii) to enable the description of
itineraries and constraints through the contents; and (iii) to
enable the temporal planning of contents during the
educational practice. Our proposal is focused on
supporting these requirements in a computational context,
both during the design-time of the materials and during
their execution in the run-time.

This proposal is developed in the context of a larger
work based on the PoEML modeling language [1]. This
language is focused on the computational support of
educational units in accordance with different kinds of
pedagogical approaches, in special practice and
collaborative-based ones. Anyway, reusability and
adaptability are a common need in the e-learning domain
independently of the pedagogical approach. The PoEML
solutions are based on the separation of concerns involved
in the computational description and support of
educational units. This separation facilitates both reuse
and adaptation of e-learning resources, as basically, the
different concerns can be managed separately in a more or
less controlled way.

The rest of the paper is organized as follows. Next
section introduces the general approach to the modeling of
educational units in accordance with PoEML, but focusing
on the concerns considered in this paper. Then, it is
described the logic of a computational system that
supports the management and control of the previous
concerns. The paper finishes with some conclusions and a
description of future works.

II. MODELS OF EDUCATIONAL UNITS IN POEML
PoEML stands for Perspective-oriented Educational

Modeling Language. EMLs [3] [4] have been proposed
several years ago with the purpose to support the creation
of models of educational units enabling the representation
of different pedagogical approaches. The main feature of
PoEML is its separation of concerns approach. Instead of
trying to support the modeling of educational units with a
complete set of elements and relationships, PoEML
considers the different concerns involved in educational
units and offers separated sets of elements and
relationships to model each concern. The complete
PoEML proposal is quite extensive, as it involves 17 dif-

12 http://www.i-jet.org

http://dx.doi.org/10.3991/ijet.v4s1.799�

DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

Figure 1. Structure of the ES as PoEML basic building block

ferent concerns, arranged in 13 perspectives and 4 aspects.
Perspectives and aspects are two different kinds of
orthogonal concerns. While perspectives are focused in
issues with a specific purpose, aspects are about issues
that do not have a specific purpose on themselves, but that
affect to other concerns. Anyway, despite the large
number of perspectives and aspects, a main property of
the PoEML proposal is that perspectives and aspects can
be used in a modular way. In practice, there exists just one
perspective that needs to be considered always in any
educational unit. Meanwhile, the other perspectives and
aspects are optional and they can be used when required.

The solution introduced in this paper involves just 4 of
the PoEML perspectives. In addition to the Structural
perspective, it also involves the “Functional”, “Order” and
“Temporal” perspectives. Next, it is provided a brief
description of them:

The Structural perspective is about the structure of the
elements involved in educational units. A basic building
block is identified and defined as an Educational Scenario
(ES). The ES enables the inclusion of the several elements
that may be involved in an educational unit. In addition, it
also enables the hierarchical aggregation of sub-ESs.

The Functional perspective is about what has to be done
in the educational unit. It involves the description of the
goals, the input requirements to allow the attempt of the
goals, the output requirements to determine the
satisfaction of the goals, the input data and output data,
and the relationships among goals. Each ES needs to
involve at least one goal.

The Order perspective is about the order in which the
several sub-ESs of a certain ES have to be performed.
Main issues in this perspective are the performance of
several sub-ESs in parallel and the synchronization of
their conclusion.

The Temporal perspective is about the specific time at
which the several sub-ESs of a certain ES have to be
performed. For each sub-ES it is possible to introduce
temporal points or constraints that determine when it has
to be initiated and finished. These temporal specifications
can be used alternatively or complementarily to the order
ones.

PoEML supports the modeling of educational units
through the use of different elements and relationships
corresponding with each one of the perspectives and
aspects. Next sections show the structure of the ES as
basic building block and the modeling of educational units
as the hierarchical aggregation of ESs.

A. The Educational Scenario
The ES is the basic building block to create models of

units of learning. Basically, an ES is an entity involving
Elements, Specifications and Expressions (Figure 1 shows
a representation of the ES elements considered in this
paper):
• Elements represent the entities contained in the ESs.

For the purpose of this paper it is enough to take into
account that an ES needs to include: (i) one or
several Goals that indicate what has to be performed
in a declarative way; (ii) one or several Roles that
indicate the functions of the participants that have to
work towards the achievement of the Goals; (iii) one
or several Environments containing the resources
that can be used by the participants to perform their
work. Each one of these elements may include other
elements, such as Data Elements, representing
properties, parameters or variables. In addition, an
ES can include other ESs arranged hierarchically,
namely: sub-ESs. In addition, it is very important to
indicate that the Goals of an ES can be related with
the Goals of its sub-ESs.

• Specifications represent controls that have to be
applied during run-time to manage the elements
involved in the ESs. For this paper the main
specifications are the Order and Temporal ones.
Their purpose is the same one described in the
corresponding perspectives.

• Expressions involve descriptions corresponding with
the aspects. They represent issues that can affect to
the features or behaviour of Elements and
Specifications. For example, Condition Expressions
determine their result in accordance with the value
of certain data elements.

This structure enables to describe the issues involved in
ESs. It is important to signal that each one of the issues
involved in an ES is included as a separate entity. In this
way, it is facilitated the modification of ESs by replacing
specific elements, specifications or expressions, thus
facilitating reusability. In addition, during run-time it is
necessary to create instances of the ESs and their
elements. The number of instances to create can be
determined statically during design-time or dynamically
during run-time in accordance with the result provided by
specific Expressions. In addition, an ES may include
several Order and Temporal specifications, but the use of
one or several ones of them can also be determined
statically during design-time or dynamically during run-
time in accordance with Expressions. In this way, there is
a great degree of adaptability.

B. The Modeling of Educational Units
The modelling of educational units is conceived

through the hierarchical aggregation of ESs. Basically,
any educational unit is composed by a root ES which con-

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 13

DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

Figure 2. Modeling of educational units as hierarchical aggregations of

ESs in PoEML

tains several sub-ESs, and each one of these sub-ESs can
contain other sub-ESs and so on. Each ES can include the
elements, specifications and expressions described in the
previous section. In addition to the hierarchical
arrangement, the several ESs are related among them in
the following ways (see Figure 2):
• The Goals of an ES can be related with the Goals of

their sub-ES through completion dependencies.
These dependencies indicate what Goals have to be
completed to complete the parent Goal. Completion
Dependencies are the black lines in Figure 2. They
serve as a means to express hierarchical relation-
ships among Goals. It can be noticed that “Goal 1”
depends on both “Goal 1.1” and “Goal 2.1” to be
complete.

• The Goals of the sub-ESs can be related among
them through attempt dependencies. These
dependencies indicate what Goals have to be
performed before other Goals. They are shown in
Figure 2 as red lines. It can be noticed that, in order
to attempt “Goal 2.1”, “Goal 1.1” has to be achieved
before. Attempt Dependencies are a kind of
precedence relationship among Goals.

• The sub-ESs of an ES can be related among them
through Order Specifications and Temporal
Specifications. These specifications indicate the
order in which sub-ESs have or should be performed
and the moments when they can/have to begin and
finish, respectively.

The Attempt Dependencies among Goals and the Order
Specifications may seem to duplicate their purpose.
Nevertheless, they have clear defined aims. The attempt
dependencies are proposed to model compulsory
dependencies, which must be satisfied always. By the
contrary, Order Specifications and Temporal
Specifications are introduced to enable the description of
orderings and plannings that can vary, depending on the
decision of a teacher, for example.

There are two fundamental design terms that can be of
aid in explaining the system’s behavior at run-time: they
are the concepts of Functional Flow and Control Flow.
The Functional Flow is intended to support content
dependencies, whilst the Control Flow deals with ordering
and temporal planning of Educational Scenarios. It can be
said that the Functional Flow depends on the very

structure of the learning content, whilst Control Flow
depends on the will of the teacher and/or temporal
constraints. So, in conclusion, once an Educational
Scenario hierarchical structure is defined, the Goal
hierarchical structure lays directly on it.

In other words, the Functional Perspective can serve as
a modeling tool to represent prerequisites that need to be
satisfied in all cases. Meanwhile, the order specification
enables an optional arrangement that may be changed.

III. THE LEARNING MANAGEMENT SYSTEM
This section shows a view of the main elements of a

LMS proposed to support the development of learning
experiences in accordance with the PoEML separation of
concerns.

A. Logical Architecture
The system architecture is structured as a three-tier

application:
• LMS presentation tier: this is the top most level of

the application. The presentation tier displays the
information to be presented to the participant
(learner or teacher). It may be a list of pending tasks
for a certain participant, an administration interface,
etc.

• LMS logic tier (hereafter, LMS Engine): the logic
tier is pulled out from the presentation tier. The
LMS engine controls the application’s functionality
by performing detailed processing.

• LMS data tier (hereafter, LMS Infrastructure): this
tier consists on database servers. Here information is
stored and retrieved.

1) The LMS Engine
The LMS engine offers the services required by the

presentation layer. Basically, the LMS engine is designed
following the separation of concerns approach. The
engine is composed of a set of components, each one
providing the needed functionality to execute the
associated perspective.

Following the principles of Component-based
Architecture, the LMS engine is designed as a set of
logical components with well-defined interfaces used for
communication by message-passing. The system
architecture is a specification of the components and
communication among them.

Each subcomponent has its own API. The most
important component is the Structural Component, as it
provides through its API the key object-structures to
access the other components APIs. This approach to the
development of a LMS engine is consistent with PoEML
philosophy and is a hot research topic in the area of
Workflow Management Systems [5]. As the LMS engine is
designed accordingly with PoEML, there exists an engine
subdivision into four components, as shown in Figure 3.
Each component encapsulates the functionality of its
associated perspective. The Functional Component deals
with the relationships among Goals, instantiation and
changes in Goal states, etc. The Order Component
resolves the precedence relationships among Educational
Scenarios and changes ESs states accordingly to its
accessibility. Finally, the Temporal Component permits to
schedule the Educational Scenarios to be performed at a
given day and hour.

14 http://www.i-jet.org

DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

Figure 3. Sequencing diagram showing the engine perspectives interacting at run-time

B. System Behaviour
This section describes the system behaviour at run-time.

It is exposed the composition of the LMS Engine tier and
communication among components, as well as the Goal
and ES instantiation process.

1) The engine perspectives interacting at run-time
In Figure 5 we can see two user actions and its

implications for the Presentation layer, LMS engine and
LMS infrastructure. When a user logs into the system via
an internet browser she/he can see a list of available
Educational Scenarios. Each of them is presented to the
user as a typical tree view. So, when the user clicks to
expand the hierarchical view a request to the Presentation
layer is produced. We can observe how this procedure is
performed at the server side through a series of
invocations and messages-passing:
• The Structural perspective receives the first

invocation from the Presentation layer requesting a
certain Educational Scenario.

• The Structural perspective retrieves the Educational
Scenario from the Data Access layer (LMS infra-
structure) and delivers it to the Presentation layer.

So, in this example we can see the three tiers of the
application collaborating among them in order to
accomplish a simple task like delivering an Educational
Scenario.

The next action in Figure 3 is a bit more complex than
the previous one. This time the user wants to start the
Educational Scenario, which is the same thing that to
attempt a Goal contained in such an ES. To accomplish
this action it is necessary the participation of more
perspectives: namely, the Structural, Functional, Order
and Temporal perspectives.

So, following with the second interaction example
shown in Figure 3, when the user tries to start an
Educational Scenario:

• The Structural perspective communicates with the
Functional perspective with the purpose of
refreshing the Functional Flow: the Functional
Perspective propagates the changes resulting from
starting an Educational Scenario.

• Next step is to instantiate the appropriate sub-ESs:
the ones containing at least a Goal in a state
different from Not proposed.

Finally, the Order perspective refreshes the Control
Flow: it is necessary to do that because the previous
changes in Goal states may affect the states of related
Educational Scenarios.

C. Execution states of an Educational Scenario instance
The PoEML description of an Educational Scenario has

to be instantiated in order to become executable. Making
an analogy: in Object Oriented Programming (OOP), a
class definition has to be instantiated (this refers to the
declaration of an object) in order to make use of it. This
case is very similar to the OOP one: the ES definition has
to be instantiated in order to become usable. Each instance
has its own execution state, its own values for variables,
etc.

At times, it is necessary to create a given number of
instances of a certain ES description. It depends on the
quantity of resources that have to be made available. For
example, in a laboratory class it may be needed to create
as many instances as there are learners participating in
the class. So, the multiplicity of instances depends on
factors such as the number of participants, the number of
participant groups to be made, etc.

The execution states of an ES instance are shown in
Figure 4. “Transition 1” (Not Created -> Not Accessible)
represents an instance creation. It happens when its
“parent” ES is accessed. It is an on-demand approach to
the instantiation process: ES instances are created when
they are needed, being thus a scalable approach.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 15

DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

Figure 4. Execution states of an ES instance in PoEML

When a given ES is accessed, the instances of its sub-
ESs are created. But, it is not all, the sub-ESs need to
satisfy another constraint: only sub-ESs having at least a
Goal instance in a state different from Not Proposed can
be instantiated.

An instanced ESs cannot be immediately accessed.
When the instance is created, it is at the Not Accessible
state. Thus, the instance cannot be provided to be accessed
by a participant (learner or teacher). It is “Transition 2”
(Not Accessible -> Accessible) that enables the instance to
be accessed by a participant, and this transition is directly
dependent on the Order and Temporal Perspectives.

The other possible states are Initiated (with the sub-
states Active and Suspended) and Finished. An
Educational Scenario becomes Active when a participant
enters it, and becomes Suspended when the last participant
leaves it. When all the Goals at the Educational Scenario
are completed, the ES instance is switched to the Finished
state.

Following with the Software Engineering book
example, we could say that each one of the book sub-
divisions (e.g., chapters) is instantiated when the “father”
subdivision (e.g., sections) is accessed and at least one of
its Goals is at a state different from Not proposed.

Moreover, a chapter becomes Accessible if it is the right
time to be performed. Chapters into sections can be
arranged in accordance with a predefined order. In
addition, it is possible to explicit the day and hour in
which the chapter has to be performed.

With our example we start to foresee some
dependencies that may arise among
• the reader’s chosen itinerary,
• the arranging order of chapters into sections, and
• the temporal planning of sections and chapters.

1) Execution states of a Goal instance
The execution states of a Goal are shown in Figure 5.

“Transition 1” represents the creation of a Goal instance
and it happens when a “father” Goal is attempted. This
means that when a participant attempts a Goal, all the
Goals that have Completion dependencies with it have to
be instantiated. The Goal instantiation process is therefore
very similar to the ES instantiation process, creating
instances when they are needed.

In a way similar to the Educational Scenario
instantiation process, a newly created Goal instance is not
automatically ready to be attempted by a Participant.
There are certain Attempt dependencies that have to be
satisfied in order to reach the Attemptable state.

Figure 5. Execution states of a Goal in PoEML

When a participant attempts a Goal, its state is set to
Pending. This means that somebody has attempted the
Goal but its achievement has not yet been evaluated. Once
it is evaluated, the Goal possible states are:
• Failed, when the Output Constraints are not

satisfied
• Satisfied, when the Output Constraints are satisfied
• Not Satisfied, when the Output Constraints are not

satisfied and there is not chance to attempt the Goal
another time.

In our “biblical” Software Engineering example book,
some analogies with the previous exposition of Goals in
PoEML can be proposed. It could be said that an itinerary
means nothing more than to attempt a Goal of the top
most level, a root Goal. Once the itinerary is chosen, it
only remains to attempt its associated Goal.

Goals are arranged into a hierarchy: from root Goals to
partial Goals. In a way similar to the ES instantiation
process, a certain Goal is instantiated when the participant
attempts a “father” Goal. It is also an on-demand
approach. Using PoEML terminology, it can be said that
there is a Completion Dependency between them: in
order to accomplish a “father” Goal, some “child”
Goals should be satisfied first.

But, there is still one key point remaining to be
considered: precedence relationships among Goals. Going
back to our example, let us consider a set of chapters
(each one with its related Goal). It is possible to explicit
that a certain chapter’s Goal has to be performed before
another one. This is called an Attempt Dependency, and it
means that in order to attempt a chapter Goal other
“brother” Goals have to be completed before.

D. Dependencies
Perspectives are not isolated concerns: it is necessary to

consider possible dependencies that may arise among
them. In the first place, we have to decide what kind of
navigation is more suitable, whether a goal-driven
navigation or an ES-driven one.

For example, if we want to model that a certain ES
(called ES_1) must be performed before another ES
(called ES_2) we have at least two valid alternatives:
• to model the precedence relationship at the

Functional level with a Goal Attempt Connector, or
• to model at the Order level with an Order Connec-

tor, particularly the Strict Sequence connector.

16 http://www.i-jet.org

DESIGN OF A FLEXIBLE AND ADAPTABLE LMS ENGINE IN CONFORMANCE WITH POEML

So, what happens if the modeler by mistake does a bad
modeling work and, at the same time that he models the
precedence relationship ES_1–>ES_2 with a Goal
Attempt Connector, he models ES_2->ES_1 with an Strict
Sequence Order Connector?. In this situation, a deadlock
is produced. The resulting Educational Scenario is
impossible to be completed. It results obvious that we
have to check the validity of the model at some point
before deploying it: the system has to perform a validity
check at build-time in order to avoid possible
inconsistencies among perspectives, and deadlocks.

The Functional Perspective lays directly on the
Structural Perspective, which is the key perspective and
acts like a solid foundation to the other perspectives. So,
the hierarchical composition of Educational Scenarios
must be the first thing to be done in a modeling work, as it
is the ground for the other perspectives. Consequently, the
Structural and Functional Perspectives are tight coupled.

On the other hand, the Order Perspective is not so
dependent on the Structural Perspective. Indeed, an
Order Specification only works with Education
Scenarios belonging to the same aggregation level. In a
similar way, the Temporal Perspective is not very
dependent on the Structural Perspective. Only sub-ESs at
the same aggregation level can be planned by a Temporal
Specification.

With PoEML we reach a very important objective: the
flexibility in precedence relationships. It is possible to
design a set of compatible Order Specifications for a
given Educational Scenario. In conclusion, it should be
possible to change the Order Specification for a given
Educational Scenario at run-time. This is what we call a
hot-pluggable Order Specification. Furthermore, the
Order Specification for a given Educational Scenario can
be switched on and off. This is a key point both for
flexibility and adaptability.

IV. CONCLUSIONS AND FUTURE WORK
It is considered that modularity is the key point both for

scalability and flexibility [6]. The LMS engine is intended
to support the e-learning solution of a broad range of
pedagogical institutions, from the small ones to the big
ones, as it can be a public university, so the solution must
be scalable. We propose a distributed object-oriented
architecture as the means to develop a scalable and
flexible system. Scalability is accomplished by
appropriate controlling of execution threads.

The PoEML separation of concerns approach permits to
develop a LMS engine incrementally and in a very
modular fashion. Each piece of functionality is separated
from the rest and has an API of its own.

Adaptability and flexibility are the two hottest
research topics both in Workflow Management Systems
and Learning Management Systems. The lack of flexibility
in WfMSs and LMSs is a well-know problem in this kind
of systems. We expect that the great modularity of the
PoEML specification will be of aid in developing a run-
time execution engine supporting the PoEML
characteristics of flexibility and adaptability. This
approach allows the administrator to make changes into a
given ES perspective specification at run-time, as the
dependencies between perspectives are explicit and well-
defined.

ACKNOWLEDGMENT
We thank “Ministerio de Educación y Ciencia” for its

support under project “Servicios Adaptativos para E-
learning basados en estándares” (TIN2007-68125-C02-
02), and “Consellería de Innovación e Industria” under
project “Diseño y desarrollo de un marco semántico para
el modelado de servicios en la administración pública.
Aplicación a la provisión de servicios frente al
ciudadano.” (PGIDIT06PXIB322285PR).

REFERENCES
[1] Manuel Caeiro Rodríguez (2007): Contribuciones a los Lenguajes

de Modelado Educativo. Tesis doctoral. Universidad de Vigo.
[2] Advanced Distributed Learning (2004) ‘Shareable Content Object

Reference Model (SCORM) Content Aggregation Model (CAM)’,
Version 1.3.1

[3] R. Koper, Modelling Units of Study from a Pedagogical
Perspective the Pedagogical Metamodel behind EML. Technical
report, Open University of the Netherlands, 2001.

[4] A. Rawlings, P. van Rosmalen, M. Rodríguez-Artacho, and P.
Lefrere, Survey of Educational Modelling Languages (EMLs),
Technical report, CEN/ISSS Workshop on Learning Technologies,
2002.

[5] S. Petkov, E. Oren, and A. Haller, Aspects in Workflow
Management¸ Technical Report DERI TR 2005-04-10, DERI
Technical Report, 2005

[6] P. Heinl and H. Schuster, Towards a Highly Scalable Architecture
for Workflow Management Systems. In Proc. Of the 7th Int. Conf.
and Workshop on Database and Expert Systems Applications,
DEXA’96, pages 439-444, Zürich, Sept. 1996.

AUTHORS
Roberto Perez-Rodriguez is with the Department of

Telematics, University of Vigo, c/o Campus Universitario,
36310 Vigo, Spain (e-mail: rperez@gist.det.uvigo.es)

Manuel Caeiro-Rodríguez, is with the Department of
Telematics, University of Vigo, c/o Campus Universitario,
36310 Vigo, Spain (e-mail: mcaeiro@det.uvigo.es).
Manuel Caeiro received his PhD in Telecommunications
Engineering from the University of Vigo in 2007. He is
currently Assistant Teacher at the Department of
Telematic Engineering, University of Vigo. He has
received several awards by the W3C, NAE CASEE new
faculty fellows and the IEEE Spanish Chapter of the
Education Society.

Luis Anido-Rifon is with the Department of
Telematics, University of Vigo, c/o Campus Universitario,
36310 Vigo, Spain (e-mail: lanido@det.uvigo.es). Luis
Anido has a Telecommunication Engineering degree with
honours (1997) in the Telematics and Communication
branches and a Telecommunication Engineering PhD with
honours (2001) by the University of Vigo. Currently,
holds the post of Director of the Innovation in Education
Unit of the University of Vigo.
This work was supported in part by the Spanish “Ministerio de
Educación y Ciencia” under Grant TIN2007-68125-C02-02, and by
“Conselleria de Innovacion e Industria” under Grant
PGIDIT06PXIB322285PR.
This article was modified from a presentation at X International
Symposium on Computers in Education (SIIE2008) 1st-3rd October
2008, Salamanca, Spain. Manuscript received 12 January 2009.
Published as submitted by the authors.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 17

