
Short Paper—Data Aggregation in Microservice Architecture

Data Aggregation in Microservice Architecture
https://doi.org/10.3991/ijoe.v15i12.11095

Ivo Damyanov
South-West University, Blagoevgrad, Bulgaria

damianov@swu.bg

Abstract—In a microservice architecture aggregation of data collected from
different sources is a common task. Today’s technology trends require us to ex-
change data that is no longer tabular. JSON data format has gained popularity
among web developers, and has become the main format for exchanging infor-
mation over the web. When we need to aggregate data collected from the web,
storing it into relational database just to perform this task and pass it to the next
unit to process or display it often is an exaggerated action. In this paper, we dis-
cuss a scenario and an implementation of in-memory preprocessing and aggre-
gating data using lazy evaluation, value tuples and LINQ.

Keywords—Microservice architecture, JSON, data aggregation, LINQ, mes-
sage broker, lazy evaluation.

1 Introduction

In the present distributed environment often we need to collect data from different
sources adjust it, aggregate it and display it on screen or store it for future processing.
Source format can be structured (hierarchical or tabular) or semi-structured (free text).
There are few architectural patterns for building systems to collect and process data
but mainly we can divide them into two groups, namely centralized and distributed.
Centralized approach means that we have a single point of control over what and
when we process, whether distributed applications are built as a bunch of independent
nodes where each one performs a single task, independently, and communicates with
the rest of the nodes via a messaging system. Maintaining changes in centralized ap-
plication reflect in redeploy of the whole application. Implementing pluggable archi-
tecture also is not an easy solution. On the other hand, distributed approach has it
benefits since we can maintain each node (worker) independently to keep it up to date
with the changes in the source.

Microservice architectural pattern is one of the emerging architectural patterns
nowadays, which is built around the following core concepts: separately deployed
units, service components and distributed nature [1]. Microservice architectural pat-
tern is a type of Service Oriented Software Architecture (SOA) with a bunch of inde-
pendent (autonomous) service components that make up our app. The biggest ad-
vantages of applying this architectural pattern are the easily deployable and testable
components as well as the ability to scale horizontally. Loose coupling and high cohe-

iJOE ‒ Vol. 15, No. 12, 2019 81

https://doi.org/10.3991/ijoe.v15i12.11095
https://doi.org/10.3991/ijoe.v15i12.11095
https://doi.org/10.3991/ijoe.v15i12.11095
mailto:ssr@online-engineering.org
mailto:ssr@online-engineering.org

Short Paper—Data Aggregation in Microservice Architecture

sion also characterize this pattern. In scenarios where we collect data from independ-
ent sources and process it (or at least aggregate it) is one of the motivated choices for
applying this pattern especially when we aim for real-time data processing and visual-
izing data.

In this paper we discuss a common scenario for an application that retrieves data
from several independent sources, adjusts its format and presentation (measures, pre-
cision, language, etc.), aggregates it and displays it as soon as new data is collected on
a dashboard [2]. Since sources are independent, the data feeds may be processed in
different order every time. Aggregated feed is displayed on screen dashboard. Such
kind of scenario is common in betting industry where it was firstly implemented by
the author. We can recognize similar scenarios also in scientific experiments, manu-
facture monitoring, etc. As was already motivated for such a scenario microservice
architecture fits well. Every worker unit communicates and shares data via asynchro-
nous messaging broker (like RabbitMQ [3]) or distributed streaming platform (like
Kafka [4]) and data is processed in memory rather than using the power of relational
database systems. We will discuss a solution that incorporates LINQ, value tuples and
lazy evaluation implemented with C# language for .NET Framework.

2 Distributed Apps and Data Formats

Using heterogeneous and distributed environment means each independent node
needs to exchange information with the rest of the application. After the era of binary
data exchange protocols and formats, in the time of web apps and services, applica-
tions expose and exchange data in textual and human readable formats. Intermediate
format for relational (tabular) data becomes the textual format of comma separated
values (CSV). Despite the compact nature of this format, it is not self-descriptive, and
usually we need to share additional information for specifying column data types or
infer data types by preprocessing data, but often this leads to some mismatches. This
weakness narrows the usage of this format and it is mainly used when we feed data
into spreadsheet processor or relational databases.

Today’s technology trends require us to exchange data that is no longer tabular.
Over the past decades, XML [5] has enabled heterogeneous computing environments
to share information over the web. XML data format is an independent and flexible
platform. XML is well suited for data exchange, since XML documents are self-
described, easily parsed and can represent complex data structures. One of the huge
advantages compared to CSV format is that XML documents can be easily validated
against XML Shema, which, in fact, is also presented in XML format. Used as a base
data format on which SOAP, the main protocol in the beginning of the SOA era (now
it is less popular), was based. Restful Services and Web UI frameworks bring JavaS-
cript object notation format (JSON) to the focus.

JSON is a data format based on the data types of the JavaScript programming lan-
guage. It has gained tremendous popularity among web developers, and has become
the main format for exchanging information over the web [6]. JSON format is self-
descriptive and with much more compact syntax compared to XML. Unlike XML it

82 http://www.i-joe.org

Short Paper—Data Aggregation in Microservice Architecture

lacks standard schema for defining the legal building blocks in a given JSON docu-
ment. JSON Schema [7] is a general attempt to define a schema language for JSON
documents. The definition is still far from being standard, but there is already a grow-
ing number of applications that support JSON schema definition. In the next lines of
code CSV, XML and JSON data formats are demonstrated.

Sport, Championship, Event
"Soccer", "Friendly Games", "Sweden - Norway"
"Soccer", "Friendly Games", "Kosovo - Malta"

<Data>
<Sport name="Soccer">
 <Championship name="Friendly Games">
 <Event name="Sweden - Norway" />
 <Event name="Kosovo - Malta" />
 </Championship>
</Sport>
</Data>

{ "Data": [
 {
 "Name": "Soccer",
 "Championships": [
 {
 "Name": "Friendly Games",
 "Events": [
 {
 "Name": "Sweden - Norway"
 },
 {
 "Name": "Kosovo - Malta"
 }
]
 }
]
 }
]
}

As we already said, technology trends require us to process hierarchical data and
JSON nature is hierarchical. JSON is natively maintained format by major messaging
brokers, and it can be easily processed from C# code using sophisticated libraries with
good performance and easy to use API.

iJOE ‒ Vol. 15, No. 12, 2019 83

Short Paper—Data Aggregation in Microservice Architecture

3 Scalable Data Aggregation wit LINQ and Value Tuples

With .NET Framework 3.5 in 2007, a Language INtegrated Queries (or LINQ) was
introduced in .NET universe to bridge the gap between programming languages and
databases and this became one of the most useful features for data processing [8].
LINQ defines an API pattern that enables querying of any data collection. The query
operator set includes filtering (where), mapping (select), monadic bind (selectMany),
sorting (orderby) and partitioning (groupBy). We can freely compose any queries. [9]
In .NET Languages like C# LINQ uses the canonical interface for collections IEnu-
merable<T> and uses delegates Func<S,T> to represent computations. The standard
query operators are defined in the Linq.Enumerable class with prototypes as shown
with the next code lines.

IEnumerable<T> Select<S,T>(IEnumerable<S> source,
 Func<S,T> selector)
IEnumerable<T> SelectMany<S,T>(IEnumerable<S> source,
 Func<S,IEnumerable<T>> selector)
IEnumerable<T> Where<T>(IEnumerable<T> source,
 Func<T,bool> predicate)

LINQ syntax is like XQuery comprehensions in the form from-where-select, as
show bellow.

from sport in sports
where sport.UsesBall()
select sport.Name

If we assume that our data is highly hierarchical we are forced to fit all the pro-
cessing (traversal walk-through data) in a nested loops. For example, if we have a
hierarchy Level 1 à Level 2 à Level 3 à Data and we need to map levels from
different sources (for example they are in different languages) we can loop thorough
data with code like this

foreach (var lvl1 in jsonData) {
 foreach (var lvl2 in lvl1.Levels) {
 foreach (var lvl3 in lvl2. Levels) {
 foreach (var data in lvl3.Data) {
 //process data
 }
 }
 }
}

Getting data that are more complex will make our code hardly maintainable. In-
stead, we can use LINQ to make it more declarative in the following way:

84 http://www.i-joe.org

Short Paper—Data Aggregation in Microservice Architecture

var query = from lvl1 in jsonData
 from lvl2 in lvl1.Levels
 from lvl3 in lvl2.Levels
 from data in lvl3.Data
 select {
 //process data
 }

Any preliminary data processing for instance mapping level’s names or turning da-
ta in common measure units, etc. can be done in a separate method over source data
and yield amended values. The only requirement is to align IEnumerable as result
type and to implement the necessary method for amending (i.e. the method Prepro-
cess).

IEnumerable<Level> PreprocessLevel(
 IEnumerable <Level> levels) {
 foreach (var lvl in levels) {
 yield return Preprocess(lvl);
 }
}

Since in our scenario we do not know how often a source can provide data and we
cannot have strict order of receiving data (they arrive as soon as they are available but
in asynchronous manner) we can model our aggregator as two LINQ queries with join
operation. Since data comes from different sources, we do not have primary keys or
other uniquely matching identities, so we need to perform matching by value tuples,
where each tuple contains (some) values and (some) data from the whole hierarchy
(Level1, Level2, Level3, Data). Then the resulting queries are as follows:

 var newDataQuery =
 from lvl1 in PreprocessLevel(source, jsonData)
 from lvl2 in PreprocessLevel(source,lvl1.Levels)
 from lvl3 in PreprocessLevel(source,lvl2.Levels)
 from data in PreprocessData(source, lvl3.Data)
 select new {
 //create anonymous class object
 lvl1SomeValue = lvl1.SomeValue,
 lvl2SomeValue = lvl2.SomeValue,
 lvl3SomeValue = lvl3.SomeValue,
 dataSomeData = data.SomeData
 };

var aggregateDataQuery =
 from lvl1 in jsonAggregatedData
 from lvl2 in lvl1.InnerLevels
 from lvl3 in lvl2.InnerLevels

iJOE ‒ Vol. 15, No. 12, 2019 85

Short Paper—Data Aggregation in Microservice Architecture

 from data in lvl3.Data
 join entity in newDataQuery on
 (lvl1.SomeValue, lvl2.SomeValue,
 lvl3.SomeValue, data.SomeData)
 equals
 (entity.lvl1SomeValue, entity.lvl2SomeValue,
 entity.lvl3SomeValue, entity.dataSomeData)
 select Aggregate(
 (lvl1.SomeValue, lvl2.SomeValue,
 lvl3.SomeValue, data.SomeData),
 (entity.lvl1SomeValue, entity.lvl2SomeValue,
 entity.lvl3SomeValue, entity.dataSomeData),
 source);

Now evaluation of aggregate Data Query will return new feed of aggregated data.
We need to create a custom Aggregate function that will do the aggregation as re-
quired by the system design.

This solution frees us from hardcoded loops and we have much more linear struc-
tures than nested blocks. Using anonymous classes and tuples makes it much simpler
to match data that needs to be aggregated.

4 Conclusion

Processing data in a distributed environment is a common task nowadays. The pre-
sented solutions with lazy evaluation, LINQ and value tuples give us freedom to pro-
cess data as soon as it arrives regardless of the order in which we collected it. This is
important especially when we need to display data in a real-time manner on screen.

5 References

[1] Mark Richards (2015), Software Architecture Patterns. Understanding Common Architec-
ture Patterns and When to Use Them, O’Reilly Media Inc.

[2] Damyanov, I., & Tsankov, N. (2019). On the Possibilities of Applying Dashboards in the
Educational System, TEM Journal, 8(2), 424- 429.

[3] https://www.rabbitmq.com
[4] https://kafka.apache.org
[5] https://www.w3.org/XML
[6] Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., & Vrgoč, D. (2016). Foundations of JSON

schema. In Proceedings of the 25th International Conference on World Wide Web (pp.
263-273). https://doi.org/10.1145/2872427.2883029

[7] http://json-schema.org/
[8] Meijer, E. (2011). The world according to LINQ. Queue, 9(8).
[9] Meijer, E., Beckman, B., & Bierman, G. (2006). LINQ: reconciling object, relations and

XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD international

86 http://www.i-joe.org

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://www.w3.org/XML
https://www.w3.org/XML
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
http://json-schema.org/
http://json-schema.org/

Short Paper—Data Aggregation in Microservice Architecture

conference on Management of data (pp. 706-706). ACM. https://doi.org/10.1145/1142473.
1142552

6 Author

Ivo Damyanov has a master’s degree in Mathematics and he holds a doctor’s de-
gree in Computer science. He is an assistant professor at the Department of Informat-
ics. His professional and scientific research interests are in the fields of: metapro-
gramming, domain-specific languages and code generation, discrete functions, e-
learning and distance learning.

Article submitted 2019-05-23. Resubmitted 2019-07-15. Final acceptance 2019-07-19. Final version
published as submitted by the authors.

iJOE ‒ Vol. 15, No. 12, 2019 87

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552

