
REMOTE LABORATORY JAVA SERVER BASED ON JACOB PROJECT

Remote Laboratory Java Server Based on
JACOB Project

doi:10.3991/ijoe.v7i1.1528

P. Bisták and P. Folvarčík
Slovak University of Technology, Bratislava, Slovakia

Abstract—Remote laboratories play an important role in the
educational process of engineers. This paper deals with the
structure of remote laboratories. The principle of the
proposed remote laboratory structure is based on the Java
server application that communicates with Matlab through
the COM technology for the data exchange under the
Windows operating system. Java does not support COM
directly so the results of the JACOB project are used and
modified to cope with this problem. In laboratories for
control engineering education a control algorithm usually
runs on a PC with Matlab that really controls the real plant.
This is the server side described in the paper in details. To
demonstrate the possibilities of a remote control a Java
client server application is also introduced. It covers
communication and offers a user friendly interface for the
control of a remote plant and visualization of measured
data.

Index Terms—Client-server systems, JACOB project, Java,
MATLAB, Remote laboratories

I. INTRODUCTION

Influenced by the growth of the Internet the online
education has become the regular part of the educational
process. In the education of engineers laboratory exercises
create the essential part of learning where students can
compare theoretical knowledge with practical skills. In the
online education classical laboratories are being replaced
by remote laboratories [8]. Although using the remote
laboratories could not be fully compared with the stay in
classical laboratories it can significantly improve the
process of getting familiar with the laboratory
environment (e.g., virtual tour) as well as it enables
acquiring measured data and their processing. Remote
laboratories differ from virtual laboratories as they
provide students with real data. Virtual laboratories rely
on simulations so the data are not real (Fig. 1).

There are several ways how to supply data to remote
users. Very often a client server architecture is used for
the exchange of data between remote sites. This paper is
focused on the server side of a client server application.
The structure of the server side can be very different with
respect to the services that should be provided to remote
clients. This contribution describes the server that is based
on the Java programming language and the COM
technology for the data exchange. Similar structures have
already been described [2-6] but the novelty of this
approach consists in the usage of JACOB project results
and their modification. This allows to avoid the necessity
of using Microsoft Java Virtual Machine (MS JVM) as it
was the case in the previous our solutions. For the future

this is important also for that fact that from the year 2009
MS JVM is no more supported by Microsoft and so it is
very hard to implement it in new Windows operating
systems.

II. REMOTE LABORATORY BASIC ELEMENTS

First review basic elements that create a remote
laboratory. As it is depicted in the Fig. 1 the remote
laboratory consists from a client side and a server side that
are interconnected through the Internet. The server side
includes the server with its hardware, software, and
additional equipment that represents a real system. The
basic task of the remote laboratory is to provide clients
with possibilities to operate with remote real systems.
Sometimes it means only to monitor how the real system
behaves or measure its characteristics. But in different
cases remote users can interact with the real system and
see its responses. This time remote users can actively
influence the behavior of the real systems or in other
words they can control it. The precondition is that it is
possible to control the real system by a computer (local
control at the server side). If this is fulfilled then the server
must manage the data flow between the client and the real
system to enable the remote laboratory will operate
correctly.

Figure 1. Remote and virtual laboratory structure

III. JAVA SERVER BASED ON JACOB PROJECT

As it was mentioned above the server mediates the
communication between clients and the real system.
Usually it transfers client’s commands to the real system
and returns the response data to the client. By this way it
operates like a proxy server. But the server can also
perform additional tasks, e.g., administration of user
accounts and control of a remote laboratory approach. In
the following we will discuss the basic functionality of the
server and describe the process of the data exchange in
details. We will not concentrate on the standard TCP/IP
communication between the server and the client that is

iJOE – Volume 7, Issue 1, February 2011 33

http://dx.doi.org/ijoe.v7i1.1528�

REMOTE LABORATORY JAVA SERVER BASED ON JACOB PROJECT

realized through the Internet. But we will focus on the
data flow between the server and the application that
directly communicates with the real system. In our case it
is the Matlab application. This means that all our real
systems are locally controlled by the Matlab.

Using the Matlab under the Windows operating system
we have several possibilities to communicate with other
applications. If we choose that Java will be the server
programming language then these possibilities are limited
to few ones.

The old technology of the data exchange called
Dynamic Data Exchange (DDE) is no more developing
from the Matlab version 5.1. The following technology
called Component object model (COM) is well supported
in Matlab but not supported in Java. On the other hand the
platform independent technology Common Object
Request Broker Architecture (CORBA) is supported by
Java but not by Matlab. To find the solution of the data
exchange between Matlab and Java we have had to look
for additional software that would enable this kind of
communication. We found the JACOB project that serves
for the interconnection of Java and COM technology as it
is written in the full title of this project: Java COM Bridge.
This determines that from the above mentioned
possibilities the COM technology has been finally chosen
for the data exchange.

A. COM technology
The COM technology has been developed by Microsoft

and so it is limited to Windows operating systems. It
defines a binary standard that is language independent and
serves for component interoperability. It allows
communication between running processes and dynamic
creation of objects in programming languages that support
this technology (unfortunately, Java does not belong to
them). By the use of the COM technology developers and
end users can choose application specific components
supplied by different producers and integrate them into a
complete application solution. The principle of COM
consists in a language neutral way of implementing
objects. Then these can be used in different environments
than they were created in, even across machine boundaries
(if we consider DCOM – Distributed COM).

Using the COM technology Matlab can play the role of
a controller or be controlled by another component. We
will choose the second possibility when the Matlab acts as

Figure 2. Matlab as the COM Server object

the server (Fig. 2). There are still two ways how to run the
Matlab in the server mode. We are not interested in the
case when the Matlab runs as the Engine Server. This case
is solved by the well-known JMatLink library [7] that also
interconnects Java with the Matlab. The disadvantage of
this solution is that it does not allow to enter the External
Mode of the Matlab that is necessary for compilation of
real time algorithms. Therefore we have chosen the
second possibility and run the Matlab as the Automation

Server that is suitable also for fast real plants with the use
of Real Time Workshop.

B. JACOB project
Up to now we have used Microsoft Java in order to

approach COM objects [3] but Microsoft finished to
support Java in the year 2009 and its software Microsoft
Java Virtual Machine has become obsolete. So we have
decided to use the JACOB project that offers a possibility
to run a Java application in any Java Virtual Machine.

The JACOB project has been developed to create the
bridge between Java and COM objects (JACOB - JAva
COm Bridge). It enables to call COM Automation
components from Java. It uses JNI to make native calls
into the COM and Win32 libraries [1]. We have tried to
use the results of this project earlier but we have not been
successful in getting data from the Matlab workspace.
After some time we have discovered that there is a small
incompatibility between JACOB and Matlab when
arguments of calling methods are misunderstood. After
small modification of the JACOB’s .dll file we were able
to use JACOB libraries and so communicate with the
Matlab Automation Server. In the Fig. 3 one can see the
structure of the Java server based on the JACOB project.
The Fig. 4 shows the server monitor windows during the
data transmission.

Figure 3. Structure of the Java server

Figure 4. Server application monitor window

The problem with the above mentioned incompatibility
appeared by the calling the method GetWorkspaceData
that serves for the transfer of a one-dimensional variable
from the Matlab environment. Matlab required the last
parameter should be the reference but references of
VARIANT types were not implemented in JACOB and
when there was an attempt to use them, the system
announced an exception. This problem has been corrected
by the modification of the JACOB’s .dll file. If the

34 http://www.i-joe.org

REMOTE LABORATORY JAVA SERVER BASED ON JACOB PROJECT

method GetWorkspaceData is called its arguments are
modified so that the new VARIANT of the VT_R8 type is
created and the original one is overwritten by the type
VT_VARIANT+VT_BYREF that points to the newly
created VARIANT of the type VT_R8. After calling
IDispatch.Invoke and its successful termination the newly
created VARIANT is copied to the place of the original
one and sent to the Java server for processing. A similar
procedure has been applied to correct calls of the
GetFullMatrix method that serves for the transfer of
arrays.

IV. CLIENT APPLICATION

The client application serves as the user interface so it
should be designed friendly. First it has to connect to the
specified address and port of the server in order to receive
data. After the connection is established the data exchange
can start. Usually the client sends Matlab commands and
waits for responses from the server. The user does not
need to know the syntax of Matlab commands. They are
mostly hidden under buttons and text boxes of the client
application. The responses from the server can be
visualized in different forms:
 text messages
 numerical data
 graphs
 animations
 video clips

The client application reads default parameters for each
system from a corresponding configuration file (Fig. 5).
The configuration file contains information about all
systems involved in the remote laboratory and because it
is in the textual form it is easy to add a new system by
simple copy and past commands to extend the file by a
new section. Then it is necessary to modify parameters
corresponding to the new system as the name of the
system, the Simulink model name, the name of the file
with initial Matlab parameters, the desired value, the
sampling period, the time of the experiment, the file for
saving outputs and the IP address of the server application.
Thus the extension and modification of the configuration
file provides the flexibility in creation of client
applications for new remote laboratories.

Figure 5. Configuration parameters for the optical system

To demonstrate features of the Java server application
based on the JACOB project we have used the universal
client application for different real systems. From the
control point of view the thermo-optical and the hydraulic
systems (Fig. 6, 7) belong to the slow systems (their time
constants are big enough so the control algorithm can run
with a longer sampling period). The other two systems
(the rotational pendulum and the magnetic levitation
system – Fig. 8, 9) are fast systems and they require to run
the Matlab in the mode of the Automation Server.

a)

b)

Figure 6. Thermo-optical system: a) real system; b) client application

a)

b)

Figure 7. Three-tank hydraulic system: a) real system; b) client
application

iJOE – Volume 7, Issue 1, February 2011 35

REMOTE LABORATORY JAVA SERVER BASED ON JACOB PROJECT

a)

b)

Figure 8. Rotational pendulum: a) real system; b) client application

a)

b)

Figure 9. Magnetic levitation: a) real system; b) client application

V. CONCLUSION

The newly developed Java server application for the
remote laboratories that is based on the results of the
JACOB project is no more dependent on the Microsoft
Java Virtual Machine. For the future this seems to be very
important because Microsoft does not support Java Virtual
machine any more. We have to mention that it was
necessary to slightly modify the JACOB’s files. Finally,
we have tested the developed software with several client
applications for different real systems and it has been
shown that it was stable under different Windows
operating systems and different versions of the Matlab
software. This means that the classical infrastructure of
control engineering laboratories can be converted to the
remote laboratories in a convenient way. Students
welcome this process as they appreciate visiting remote
laboratories very much.

ACKNOWLEDGMENT

The work has been partially supported by the Grant
KEGA No. 3/7245/09 and by the Grant VEGA No.
1/0656/09. It was also supported by a grant (No. NIL-I-
007-d) from Iceland, Liechtenstein and Norway through
the EEA Financial Mechanism and the Norwegian
Financial Mechanism. This project is also co-financed
from the state budget of the Slovak Republic.

REFERENCES
[1] D. Adler, The JACOB Project, http://danadler.com/jacob/
[2] P. Bisták, “Remote control of thermal plant using Easy Java

Simulation,” Proceedings of Int. Conf. on Interactive Computer
Aided Learning ICL’06, Villach, Austria, 2006.

[3] P. Bisták, “Remote Laboratory Java Server for Data Exchange
with Matlab Automation Server,” Proceedings of International
Conference REV 2008, Düsseldorf, Germany, 23-25 June, 2008.

[4] R. Safaric,, S. Uran, M. Trunic, I. Hedrih, “Remote controlled
mechatronics device via internet using Matlab,” Proceedings of
1st Int. REV Symposium, Villach, Austria, 2004.

[5] Y. Sheng, W. Wang, J. Wang, J. Chen, “A Virtual Laboratory
Platform Based on Integration of Java and Matlab,” Li, F. et al
(Eds.) ICWL 2008, LNCS, vol. 5145, Springer-Verlag Berlin
Heidelberg, 2008, pp. 285-295.

[6] V. Žilka, P. Bisták, P. Kurčík, “Hydraulic Plant Remote
Laboratory,” International Journal of Online Engineering, ISSN
1861-2121, vol. 4, Special Issue 1: REV2008, July 2008, pp. 69-
73.

[7] S. Müller, H. Waller, “Efficient integration of real-time hardware
and Web based services into MATLAB,” Proceedings of 11th
European Simulation Symposium, Erlangen, Germany, 1999.

[8] L. Gomes, S. Bogosyan, “Current Trends in Remote
Laboratories,” IEEE Trans. Industrial Electronics, vol. 56, No. 12,
pp. 4744- 4756, December 2009. doi:10.1109/TIE.2009.2033293

AUTHORS

P. Bisták is with the Institute of Control and Industrial
Informatics, Faculty of Electrical Engineering and
Information Technology, Slovak University of
Technology in Bratislava, STU FEI Bratislava, Ilkovicova
3, 812 19 Bratislava. (e-mail: pavol.bistak@stuba.sk).

P. Folvarčík is with the Institute of Control and
Industrial Informatics, Faculty of Electrical Engineering
and Information Technology, Slovak University of
Technology in Bratislava, STU FEI Bratislava, Ilkovicova
3, 812 19 Bratislava. (e-mail: pavol.folvarcik@stuba.sk).

36 http://www.i-joe.org

http://danadler.com/jacob/�
http://dx.doi.org/10.1109/TIE.2009.2033293�

	call2.pdf

