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Abstract—Rolling bearings are widely used in modern production equip-

ment. Effective bearing fault diagnosis method will improve the reliability of the 

machinery and increase its operating efficiency. In this paper, a novel fault diag-

nosis method based on WSN and CNN has been proposed to fully utilize the 

strong fault classification capability of CNN and the inherent merits of WSNs, 

such as relatively low cost, convenience of installation, and ease of relocation. 

The feasibility and effectiveness of proposed system are evaluated using the vi-

bration data sets of seven motor operating conditions released by the Case West-

ern Reserve University Bearing Data Center. The experimental results show the 

fault diagnosis accuracy of the proposed approach can reach 97.6%. 

Keywords—Fault diagnosis, wireless sensor networks, convolutional neural 

network, rolling bearing. 

1 Introduction 

Rolling bearings are widely used in modern production equipment and nearly 50 

percent mechanical faults are occurred on bearing and related components [1]. For this 

reason, much attention has been focused on effective bearing fault diagnosis methods 

[2-4]. It is well known that the structural damage of rolling bearings usually leads to 

high-frequency and periodic shock on the vibration signal [5-7]. Therefore, identifying 

such shock signals from the original vibration signal is the key step for fault diagnosis 

[8]. At present, vibration signals of rolling bearings are generally collected by wired 

communication. However, the traditional wired network requires a great deal of man-

power and material input in wiring, assembling and later maintenance, which may even 

exceed the price of the sensor itself [9-11]. 

The emergence of wireless sensor networks (WSNs) solves the above problems in 

wired networks. In recent years, Internet of things technology gradually attracts people's 

attention. WSNs, as the carrier of the underlying IoT, develop rapidly as well [12]. 

WSNs are communications networks composed of a large number of inexpensive wire-

less microcontrollers that can transmit wireless data in a given area [13]. WSNs are 

widely used in most fields because of its advantages such as flexible installation posi-

tion, economical network maintenance, and convenient node replacement [14]. In terms 

of bearing monitoring, J. Sun et al. [15] proposed a data acquisition and reconstruction 
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scheme based on compressed sensing and sparse Bayesian learning algorithm to solve 

the problem of insufficient power supply of WSN in the industrial environment. This 

method can reduce the transmission pressure of WSN nodes and improve the life of 

nodes without affecting the monitoring effect. G. Feng et al. [16] achieve signal acqui-

sition, data processing using fast Fourier transform and Hilbert transform, and feature 

extraction using envelope spectrum analysis on the end node of WSNs, and then only 

transmit the fault characteristics to the coordinator node and the PC. Experiments show 

that this method can reduce data transmission by 95% compared with direct transmis-

sion of raw data. Besides machine condition monitoring and fault diagnosis, WSNs also 

plays an irreplaceable role in the fields of structure monitoring [17-19], home automa-

tion [20], mass transportation [21-22] and security prevention [23]. 

Deep learning was formed in the 1980s and booming by 2012 with the development 

of convolutional neural network (CNN) [24-25]. Deep learning has been widely used 

in object image recognition [26], natural language processing [27], medical diagnosis 

and treatment [28], infrastructure engineering [29], and other fields due to its excellent 

feature extraction capability. CNN as one of the classic deep learning methods has been 

successfully applied in fault diagnosis. D. Verstraete et al. [30] built a fault diagnosis 

model based on time-frequency images of vibration signals by utilizing the powerful 

image recognition capability of CNN. Experiment results show the presented method 

can get better results with fewer parameters. M. Sadoughi et al. [31] divided feature 

extraction and CNN fault diagnosis into blocks, first selecting specific data features, 

and then taking these features as CNN input. This method can effectively solve the 

problem of simultaneous state monitoring and fault diagnosis of multiple rolling bear-

ings. S. Udmale et al. [32] presented and evaluated a bearing fault diagnosis approach 

based on kurtogram and deep learning sequence models. D. Belmiloud [33] presented 

and tested a novel bearing failure prediction method based on wavelet packet decom-

position and deep convolutional neural networks. T. Pan et al. [34] proposed and veri-

fied a fault diagnosis method for shipborne antenna using 1D-CNN based on multi-

scale inner product and locally connection feature extraction. 

In summary, compared with traditional wired systems WSNs have many inherent 

merits, while CNN is a promising deep learning method for bearing fault diagnosis. 

However, bearing fault diagnosis by combining WSNs and CNN is a relatively unex-

plored area. 

Compared with the above-mentioned bearing fault diagnosis methods, this paper 

proposes a novel bearing fault diagnosis method based on WSNs and CNN, in which 

WSNs are used to measure and transmit the bearing vibration signal, while CNN algo-

rithm on a laptop is used for bearing fault diagnosis. 

The reminder of this paper is organized as follows. Section II briefly introduces the 

principle of CNN, while Section III describes the system architecture and implementa-

tion methodology. Section IV gives the experimental evaluation of the proposed 

method. Finally, Section V presents the overall conclusions. 
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2 CNN Principle 

CNN is generally composed of an input layer, several convolutional layers and pool-

ing layers, a fully connected layer, and an output layer. The convolutional layer and 

pooling layer can appear alternately more than one times. The convolutional layer is 

responsible for extracting the feature information from the input signal, while the pool-

ing layer is used to reduce the number of parameters and the computation load. In ad-

dition, the fully connected layer can be replaced by the convolutional layer. The struc-

ture of the convolutional neural network is shown as Fig. 1. 

 

Fig. 1. Convolutional neural network structure diagram 

2.1 Convolutional layer 

The convolutional layer is the core layer of a CNN. It convolves the input signal with 

different receptive fields to get a new signal. This procedure is named as feature map-

ping. Different receptive fields can extract different feature maps, which represent var-

ious feature information in the original signal. This feature information is the main basis 

for classification or regression in the fully connected layer. The convolution layer func-

tion expression is 

 𝐻𝑗 = 𝑓(∑ 𝐻𝑖
′ ×𝑊𝑖𝑗 + 𝑏𝑗

𝑝

𝑖=1
) (1) 

where𝐻𝑗 is the 𝑗-th output feature map of the convolutional layer, 𝐻𝑖
′ is the 𝑖-th input 

signal of the previous layer, 𝑝 is the number of receptive fields in the previous layer, 

𝑊𝑖𝑗 represents the weight matrix connecting 𝐻𝑖
′and 𝐻𝑗, 𝑏𝑗 represents the additive bias 

corresponding to the 𝑗-th receptive field, 𝑓(∙) is the excitation function. 
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2.2 Pooling layer 

The main function of the pooling layer is to reduce the size of its input signal, and 

then reduce the total number of parameters and calculation load of the CNN. By com-

bining the signal in a certain range into a representative value reflecting the most es-

sential characteristics in the range, the pooling layer can effectively reduce the signal 

size. The pooling area needs to be set according to the actual situation. The pooling 

layer function is 

 𝐻𝑗 = 𝑓(𝛽𝑗𝑑𝑜𝑤𝑛(𝐻𝑗
′) + 𝑏𝑗) (2) 

Where, 𝐻𝑗 is the 𝑗-th output feature map of the current layer, 𝐻𝑗
′ is the output feature 

map of the previous layer, 𝑑𝑜𝑤𝑛(∙) represents the pooling rules applied to the pooling 

layer, 𝛽𝑗 is the 𝑗-th multiplicative offset of the layer, 𝑏𝑗 is the 𝑗-th additive offset of the 

layer. 

2.3 Fully connected layer 

The fully connected layer, the last layer before the output layer, is generally used to 

conduct classification or regression. In the modeling of the migration process, the fully 

connected layer can also play the role of "firewall", especially in the greater difference 

between the source domain and target domain cases. The connection layer function is 

given by 

 𝑦 = 𝑓(𝑊𝑇𝑥 + 𝑏) (3) 

Where 𝑦 is the constant output of the layer, 𝑊 is the receptive field of the layer, 𝑥 

represents the input signal of the layer, while 𝑏 represents the additive bias of the layer. 

In this article, the role of the fully connected layer is to classify bearing faults, so a 

Softmax function is employed as the activation function for this layer. 

3 System Architecture and Implementation 

This architecture of the proposed bearing fault diagnosis system is illustrated in Fig. 

2. The system consists of several WSN end nodes, one WSN coordinator, and a cen-

tralized computer. Star topology, IEEE 802.15.4 and ZigBee protocols are used for the 

WSN. The end nodes and coordinator are used to collect and transmit bearing vibration 

signal to the centralized computer, while the centralized computer is employed to 

achieve bearing fault diagnosis based on CNN. This architecture fully utilizes the ad-

vantages of WSNs and the computing power of the centralized computer to obtain ac-

curate fault diagnosis result. 
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Fig. 2. Fault diagnosis system architecture diagram 

4 Experimental Validation 

4.1 Experimental setup and procedure 

A series of experiments was conducted to evaluate the proposed bearing fault diag-

nosis method. The experimental setup used in this research in shown as Fig. 3. One 

WSN end node transmits the vibration data to the coordinator through ZigBee3.0 pro-

tocol, which send the data to the host computer via USB. Then, the developed fault 

diagnosis APP on the host computer receives and displays vibration data, completes 

bearing fault diagnosis based on CNN, and gives the final results. 

 

Fig. 3. View of experimental setup 

In this project, two NXP JN5169 carrier boards are used as the basic hardware plat-

form for the end node and coordinator. The carrier board includes an NXP JN5169 

microcontroller and its peripherals. JN5169 microcontroller supports IEEE 802.15.4 

36 http://www.i-joe.org



Paper—Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional… 

and ZigBee3.0 protocols, and it integrates a 32-bit RISC architecture with 512 kB Flash, 

4 kB EEPROM, and 32 kB RAM, also a fully compliant 2.4 GHz IEEE 802.15.4 trans-

ceiver [35]. In addition, JN5169 contains a 128-bit AES security processor to ensure 

the security during data transmission. The JN5169 is chosen, representing a state-of-

the-art small WSN node suitable for industrial application. 

As this paper mainly explores the feasibility of bearing fault diagnosis using WSN 

and CNN, instead of building up a testbed, this research uses the data set released by 

the Case Western Reserve University Bearing Data Center [36] and widely used in 

bearings fault diagnosis fields [4, 37-40]. This data set contains vibration data under 

fan end fault (FE), driver end fault (FE), and normal state (NOR). Both DE and FE 

include outer ring fault (OR), inner ring fault (IR) and rotor fault (B). Each fault has 

three different fault depths, namely 7, 14, and 21 mils. 

In this experiment, the bearing vibration data under a rotating speed of 1730 r•min-

1 and a load of 1hp are used to evaluate the feasibility of the proposed approaches. The 

vibration data is from seven bearing operating conditions, namely normal (NOR), driv-

ing-end rotor fault (DE-B), driving-end outer ring fault (DE-IR), driving-end outer ring 

fault (DE-OR), fan-end rotor fault (FE-B), fan-end outer ring fault (FE-IR) and fan-end 

outer ring fault (FE-OR). 700 sets of vibration data, 100 sets for every operating condi-

tion, are employed. Every data set includes 1024*3 sample points, namely the vibra-

tions at base plate, the drive end and the fan end of motor. 

The implementation of the proposed bearing fault diagnosis algorithm based on CNN 

is shown as Fig. 4. It is code using MATLAB on a laptop with Intel i3-3240 3.4GHz 

CPU and 8GB RAM. Part of the vibration data sets are used to train and optimize the 

CNN. After obtained the optimized parameters of the CNN, these parameters are then 

embedded in the fault diagnosis APP. Finally, the remained data sets are employed for 

verifying the effectiveness of the proposed method. 

 

Fig. 4. Fault diagnosis flow chart 
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The interface of designed fault diagnosis APP is shown as Fig. 5. As an example, 

Fig. 5 (a) is for normal condition and Fig. 5(b) is for DE-B condition. The upper portion 

of the panel is used to display vibration signal curves. The serial port setting including 

the transmission rate, data bits, input buffer size, and output buffer size is on the lower 

left corner. The control buttons for “Input Data” and “Fault Diagnosis” and result indi-

cation for data transmission and bearing working status are located on the lower right 

corner. 

  

a) normal condition b) DE-B condition 

Fig. 5. The interface of fault diagnosis APP.(a) normal condition, (b) DE-B condition 

4.2 Experiment results 

Vibration data transmission: In this experiment, the selected vibration data sets are 

loaded to the end node in advance to verify the data transmission capability of the pro-

posed system. These data sets are then transmitted to the coordinator wirelessly. When 

the coordinator receives the data, it sends the data to the host computer by USB imme-

diately. Experimental results show that the proposed bearing fault diagnosis is able to 

transmit the vibration data wirelessly. Typical vibration signal waveforms for the seven 

bearing working conditions are given in Fig. 6. The red, blue, and green curves are the 

vibration signal measured at the base plate, the drive end and the fan end of motor, 

respectively. 
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Fig. 6. Vibration signal of rolling bearing 

Fault diagnosis accuracy: Considering the accuracy of fault diagnosis and calcula-

tion load, the data set used in this experiment consists of 1024*3 sample points, namely 

three 1024-points vibrations signals that measured at base plate, the drive end and the 

fan end of motor. Therefore, this paper constructs a basic 2D-CNN consisting of an 

input layer, an output layer, a convolutional layer, a pooling layer, and a fully connected 

layer. In order to prevent over-fitting, a dropout layer with a probability of 0.5 is added 

following the pooling layer during the training process of the CNN and closed in the 

fault diagnosis process. The main parameters of convolution layer and pooling layer 

used in this experiment are given in Table 1. The learning rate, maximum training node, 

and the mini-batch size of proposed CNN model is set as 0.01, 20, and 5, respectively. 

Table 1.  Parameters of convolutional layer and pooling layer 

Number of layers Receptive width Receptive height Step size 

Convolutional layer 1 5 3 1 

Pooling layer 1 10 1 1 

 

Shown as Table 2, the output of the CNN is number 0 to 6 representing the seven 

bearing working conditions. To achieve accurate fault classification, the Softmax 

function is used as the output function of the fully connected layer. 

Fault type and its corresponding label 

Fault type NOR DE-B DE-IR DE-OR FE-B FE-IR FE-OR 

CNN output 0 1 2 3 4 5 6 

 

Like most neural networks, the fault diagnosis accuracy of CNN depends on the 

number and quality of the training data set. Therefore, various training-testing data 

ratio, namely 7:3, 5:5, 3:7, and 1:9, are adopted in this experiment to evaluate the fault 

diagnosis accuracy of the proposed method for the different training data sets size. 
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The Classification results of the proposed method with various training-testing data 

ratio are illustrated by confusion matrix in Fig. 7. It can be seen that when the ratio is 

7:3 and 5:5 the fault diagnosis accuracy of the proposed method reaches 100%. When 

the ratio is 3:7 and 1:9 the fault diagnosis accuracy drops to 99.80% and 97.6%. For the 

ratio of 7:3, one FE-B data set is incorrectly classified as FE-IR. However, its location, 

fan end, is still correct. For the ratio of 1:9, eight DE-OR data set is misdiagnosed as 

DE-IR, one FE-B data set is misdiagnosed as FE-IR, while six FE-OR data set is 

misdiagnosed as FE-IR. Although fault diagnosis accuracy significantly decreases for 

the ratio of 1:9, the classification of fault location is still right. 

  

a) 7:3 b) 5:5 

  

c) 3:7 d) 1:9 

Fig. 7. Confusion matrix with various training-testing ratios 

40 http://www.i-joe.org



Paper—Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional… 

5 Conclusion 

In this paper, a novel fault diagnosis method based on WSN, CNN has been pro-

posed, and evaluated using the vibration data sets of seven motor operating conditions 

that released by the Case Western Reserve University Bearing Data Center. The exper-

imental results show: (1) the proposed bearing fault diagnosis based on WSNs is able 

to transmit and display the vibration data smoothly; (2) the fault diagnosis accuracies 

of the presented method using CNN reach 100% when the ratios of training data against 

testing data are 7:3 and 5:5, while the accuracies reach 99.8% and 97.6% for the ratios 

of 3:7 and 1:9. 
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