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Abstract—In the computer vision, background extraction is a promising tech-

nique. It is characterized by being applied in many different real time applications 

in diverse environments and with variety of challenges. Background extraction is 

the most popular technique employed in the domain of detecting moving fore-

ground objects taken by stationary surveillance cameras. Achieving high perfor-

mance is required with many perspectives and demands. Choosing the suitable 

background extraction model plays the major role in affecting the performance 

matrices of time, memory, and accuracy. 

In this article we present an extensive review on background extraction in 

which we attempt to cover all the related topics. We list the four process stages 

of background extraction and we consider several well-known models starting 

with the conventional models and ending up with the state-of-the art models. This 

review also focuses on the model environments whether it is human activities, 

Nature or sport environments and illuminates on some of the real time applica-

tions where background extraction method is adopted. Many challenges are ad-

dressed in respect to environment, camera, foreground objects, background, and 

computation time. 

In addition, this article provides handy tables containing different common 

datasets and libraries used in the field of background extraction experiments. 

Eventually, we illustrate the performance evaluation with a table of the set per-

formance metrics to measure the robustness of the background extraction model 

against other models in terms of time, accurate performance and required 

memory. 

Keywords—Video surveillance, Background extraction, Foreground object, 

Evaluation metrics 

1 Introduction 

In the last two decades and with the rapid development of sensors and the increasing 

safety concerns, detecting moving objects has been one of the most essential topics in 
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the computer vision field [1]. Real time applications with different environment and 

many challenges are available with diverse interest where the foreground data can be 

used in tracking, synopsis and anomaly detection [2][3][4]. 

Foreground detection has been applied to vast scope of smart video surveillance sys-

tems of human activities like road and airport traffic surveillance, human detection and 

tracking, analysis of sports video surveillance, and recognition of  gesture in the inter-

face of human-machine etc. [5][6]. Background extraction is the most popular tech-

nique employed in this domain to extract the foreground moving objects taken by sta-

tionary surveillance camera [7]. 

In this article, we shed light on the publications of different background extraction 

techniques. In section 2.1, we discuss the four stages of background extraction process. 

In section 2.2, we review the background extraction models and describing how the 

model works and how it reacts according to different environments and challenges. In 

section 3 and 4, we focus on reviewing the implementation of background extraction in 

video surveillance applications and the environments of background extraction-based 

video surveillance. While section 5, is about the challenges of background extraction 

models applied on video surveillance. 

Furthermore, in section 6&7 we list tables of datasets and libraries used in the field 

of background extraction model and finally, section 8 is illustrating the performance 

evaluation and the set performance metrics to assess the background extraction models 

in terms of time, accuracy and memory. 

2 Background Extraction 

Background extraction remains an active interesting area in the domain of computer 

vision. Many models have been developed for extracting the background to detect the 

foreground. Background extraction models are going through ordered stages to obtain 

the foreground masks. 

2.1 Background extraction stages 

In surveillance systems, where background extraction model is applied, the back-

ground extraction model is usually comprising of sequenced stages as the following: 

1. Background initialization: We generate or construct the first background scene 

among numbers of video frames. 

2. Background modeling: We describe a representation model for the background 

scene. 

3. Background maintenance: We update the background model according to changes 

that occur within time. The update is done according to the prior scene, the recent 

scene and foreground mask. 

4. Foreground detection: It is the final stage, where we classify the pixel into back-

ground or foreground object, and this is done by comparing the background scene 

with the recent scene. 
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In each stage, different algorithms are employed; some algorithms are offline where 

all data is required at once like in background initialization stage. On the other hand, 

the online algorithms require to take data one after another incrementally like in back-

ground maintenance stage. 

Some pre-processing operations might be taken, including framing the video or 

changing the color space. Post-processing also could be done by applying various al-

gorithms to overcome a specific challenge in background extraction process [8]. Fig-

ure1 Illustrates the overview of background extraction stages. 

 

Fig. 1. The overview of background extraction stages 
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2.2 Models 

Background extraction models have been classified in many works; the following is 

the classification of these extraction models: 

 

1. Basic models 

The basic models are the conventional methods in which used earlier for the back-

ground extraction. In basic models, each pixel of the current frame is classified either 

as a background or foreground according to a threshold differences with the background 

model frame. These are quite simple and fast techniques, but they come with low per-

formance, especially with complex and challenging background images [9]. These 

models are dependable on threshold and are not supporting the multiple model back-

ground distributions [10]. An example of basic models is mean model [11], median 

model [12][13][14][15][16], and analysis of histogram model [17][18]. 

2. Mathematical models 

The mathematical models comprise a verity of models like statistical (probabilistic) 

models, dempster– Schafer model [19] and fuzzy models [20]. Statistical models, are 

either parametrical or non-parametrical .In paramedical model, the main method used 

is the Gaussian Mixture Model (GMM) [21], it is one of the most robust algorithms in 

respect to different background variation such as lighting changes and multi-modal 

changes [22]. In GMM, there are three important parameters to be considered: the com-

ponent's number, detection threshold and learning rate [6]. Each pixel in GMM is rep-

resented in multiple Gaussian components [5]. However, the GMM suffers from slow 

recovery and poor performance with unexpected lighting changes and background ab-

normal motions [23]. Moreover, due to the parametrical nature of GMM model, the 

efficiency can be diminished either by selecting inaccurate parameters or by the time 

consumed in setting the parameters in which makes GMM unpreferable with real time 

applications [24]. The parameters are: group of components, learning rate and threshold 

of classification. 

For years, researchers work on enhancing the GMM to prevail the challenges, like 

in Boosted Gaussian Mixture Model where this method boosts the performance of 

GMM using both color space classification and dynamic learning to update the back-

ground model[25]. Improved Gaussian background modeling (GBM) is another en-

hanced model in which wavelet denoising is applied on foreground object, this model 

achieved a better performance in respect to shadow and lighting changes challenges 

[26]. On the other hand a Self-Adaptive Gaussian Mixture Mode improved the speed 

performance of GMM four times by using a block of pixels instead of considering one 

pixel value[27]. 

Visual Background extractor (ViBe) is also introduced as a background extraction 

algorithm, which uses a novel techniques that considering the effect of a value in a 

multicolor space to be restricted to a local neighborhood[28][29][30]. In ViBe classifi-

cation is done by comparing a value to its closest values in the set of samples instead 

of using the probability density function (pdf) to update the background model for 
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obtaining the better results [31]. Substance Sensitivity Segmenter (SuBSENSE) algo-

rithm is influenced by ViBe algorithm, it fuses color-LBSP with local adaptive sensi-

tivity to perform much robust performance[32] in CDnet 2014 dataset [33]. 

Another method used as statistical model is the non-parametric model for kernel 

density estimation (KDE) [34][35]. In this model the pixels density is being estimated 

by kernel function which denoted by histogram of pixels with most recent values [10]. 

This non-parametric method is directly estimating the intensity of pixels using the den-

sity function in contract with a parametric method. This leads to a clearer representation 

of pixels intensity[36]. KDE performs better in static background environment for long 

period of time and a moderate speed motions for the objects. While, KDE fails to solve 

the challenges of multi background model, multiple moving objects, and slow move-

ment of the objects [21]. It is not suitable also with real time applications, due to high 

computation time consumed for estimating the density of pixels from many needed 

samples over time [36]. Moreover, Pixel-Based Adaptive Segmenter (PBAS) is another 

non-parametric method in which performs well with shadow and thermal scenes 

[37][38]. 

Many methods are classified under mathematical models like mean shift which, per-

forms well with multiple background models[10][39], dempster – Schafer [19] and 

fuzzy models [20][40] where both could deal with ambiguity, incompetence and inac-

curacy of data caused by many challenges [41]. 

3. Single processing models (Filters models) 

Filter model is a predicting model which estimates the background by expecting the 

information of a pixel or a block of pixels from the previous pixel, this information 

could be the orientation or the value of the pixel [6].  Many examples of filters have 

been applied in this approach such as Kalman filter [42][43], Tchebychev filter [44], 

Wiener filter [45], particle filters [46], Correntropy filter [47], and optical flow [48]. 

This model is not applied in real time applications because of its complexity, inaccuracy 

detection and highly prone to noise, even though it could be a good choice for images 

with progressive lighting changes [6]. 

4. Clustering algorithms models 

Clustering model uses the color or intensity of the pixel in detecting the foreground 

object. In the background frame each pixel is characterized by its correspondent cluster 

of pixels. Pixels for the current frame are compared to clusters, to decide whether it is 

a background pixel or not. 

Many algorithms have been used in this model such as K-means algorithm [49], 

background reconstruction algorithm [50], and Codebook model [51][52]. 

Codebook model is used as a compression method to represent the value of back-

ground pixel in a long period of frequent image sequence and this method uses the 

intensity of color as information to detect the foreground objects [51][52][7]. Codebook 

model performs better with noise and dynamic backgrounds, but fails with unexpected 

lighting changes, shadow movements, similarity of foreground color to background and 
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slow objects movements [36][52]. Mandy improvements have been done to codebook 

model in [53][54][55][56]. 

5. Machine learning models 

Machine learning models include many models like, subspace learning which is ei-

ther reconstructive unsupervised techniques that provide a good data estimation 

[57][58][59][60] or discriminative supervised techniques that provide a good data sep-

aration classification [61][62] or mixed [63]. 

Another examples of machine learning concept are: robust subspace tracking [64], 

support vector machines (SVM) [65][66][67][68][69][69], robust subspace learning 

[70][71][72][73], tensor decomposition [74][75][76], deep learning 

[77][78][79][80][81][82] and neural networks [83][84][85][86][87] which have been 

widely adopted since 2014 [88], mainly because of the great increase of processing 

power in new hardware as well as the availability of many training datasets [89]. 

Whilst machine learning provides the concepts that enable us to acquire the pixel 

representation of the background in both supervised and unsupervised behaviors; the 

extraordinary breakthrough began with the supervised training of an 8-layer neural net-

work using a dataset containing millions of images [90][91][92] for the task of fore-

ground/background separation, the application of DNNs was successful in enhancing 

foreground detection, background subtraction, generating the ground-truth, as well as 

for learning deep spatial features. 

Recently, in the area of computer vision, particularly in object detection and seg-

mentation, the use of deep convolutional neural networks (CNNs) has produced re-

markable results [5][93]. The use of CNNs in foreground detection was initially sug-

gested by Braham and Droogenbroeck [77]. Background images produced by median 

filtering along with patches of frames, were adopted as input for the CNN. The CNN, 

which has multiple convolutional layers and fully connected layers, provides a map that 

represents the likelihood of every pixel being a foreground pixel. CNNs easily achieve 

the distinction between the foreground and the background. However, given the small 

scale of the dataset, as only dozens of videos are available in CDnet 2014 [33], it can 

be challenging to learn the high-level information. 

In recent years, significant advancements were made in the field of computer vision 

due to the utilization of deep learning. Even though deep convolutional neural networks 

(CNNs) were originally devised for the task of image classification, they were utilized 

in computer vision for their robust performance in the extraction of high-level charac-

teristics. For many years, the use of CNNs in computer vision was restricted due to the 

limited computing power, and the small size of accessible datasets [90][91]. The ma-

chine learning methods achieve good results to overcome the challenge of lighting 

changes. However, these methods do not work properly in scenes with abnormal dy-

namic background movements and non-static shadows as well as an extended pro-

cessing period [94]. 

Many scholars have been studied the background extraction since the early convo-

lutional models up till the state-of-the-art models like deep learning and CNN models. 

Regardless of various background extraction models, there is no unique model that 

solves all the challenges in respect to real time applications. Fusion of different models 
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and strategies have been experienced in numerous papers to achieve a better perfor-

mance [7]. 

Table 1 summarizes the background extraction models, the model environments, the 

model strength, and the model weakness. 

 

Table 1.  The background extraction models, environments, strength, and weakness. 

Background Extraction 

Models 

Environment Model strength Model weakness 

Basic Models: 

-Mean [11] 

-Median [12] [13][14][15][16] 
-Histogram [17][18] 

 

Traffic surveillance  

in road and highways 
and Airport  

surveillance 

 

Simple and fast techniques 

which still dominant in  
the field of background  

extraction with real time 

applications 

 

Low performance with 

challenging background  
images and these models  

are dependable on 

threshold and are not  
supporting the multiple  

model background 

distributions. 

Mathematical Models: 

 

-Statistical Models 

Parametric models 

-GMM[21][22][23][24][25] 

[26][27]  

 

-ViBe [28][29][30][31]  

-SuBSENSE [32] 
 

 

Non-parametric models 

 

-KDE [34][35] 
-PBAS [37][38] 

 
 

 
 

 

 
 

Mean shift [10][39] 

 

 

 

Dempster – Schafer [19] 
Fuzzy models [20][40] 

 

 
 

 

 

 

 

 
Nature environments 

especially with a 

very 

challenging 

environment  

like maritime &  
submarine 

 

 

 
-Parametric Models 

performing well  

in respect to different  

background variation  

such as lighting changes 

and multi-modal changes 
 

 

-Nonparametric models 
perform better in 

static background  
environment for long  

period and a moderate  

speed motions  
for the objects 

 

 
 

 

Mean-shift performs  
well with multiple 

background models 

 
 

Both Dempster-Schafer 

and Fuzzy models  
could deal with ambiguity, 

 incompetence and  

inaccuracy of data caused  
by many challenges and 

they consume less time 

 

 

 
-Parametric Models are 

not performing 

well with sudden lighting  

changes and background  

abnormal motions 

 
 

 

-Nonparametric models  
fail to solve the  

challenges of multi –  

background model,  
multiple moving object 

and slow movement  

of object It is not suitable 
also, with real time 

applications due to high 

computation time 
 

Mean-shift does not  

perform well with 

multi-dimensions of the  

space. 

 
For both Dempster-

Schafer 

and Fuzzy models, they  
still need to be  

experimented on various  

datasets. 

Single Processing Models: 
 

-Kalman filter [42][43] 

 
 

Human activities  

 
 

This model is a good choice 

 
 

This model is not applied 
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-Tchebychev filter [44] 
-Wiener filter [45] 
-Particle filters [46] 

-Correntropy filter [47] 
-Optical flow [48] 

Environments for images with 
 progressive lighting  

changes 

in real time application  
because of its complex-

ity, 

inaccuracy detection  
and highly prone to noise 

Clustering Algorithms  

Models: 

 

- K-means algorithm[49]  

- Codebook model 

[51][52][53] 

[54][55][56]  

 
 

Human activities  

environments and  

Nature environments 

 
 

This model performs better 

 with noise and dynamic 

 backgrounds. 

This model fails with 
unexpected lighting  

changes, shadow  

movements, similarity  

of foreground color  

to background and  

slow objects movements 

Machine Learning Models: 

 

-Reconstructive 
[57][58][59][60] 

-Discriminative [61][62] 

-Mixed [63]  
-Robust subspace learning  

[70][71][72][73]  

Support vector machines  
[65][66][67][68][69] 

-Tensor decomposition 

 [74][75][76]  
-Robust subspace tracking 

[64] 
-Neural networks [83][84][85] 

[86][87] 

-Deep learning 
[77][78][79][80] 

[81][82] 

Human activities  

environments like  

vehicle counting,  
vehicle and persons 

detections and  

Nature environments 
 

This model performs  

better results for 

lighting changes. 

This model does not 

work 

properly in scenes with 
abnormal dynamic  

background movements  

and non-static shadows 
and have an extended 

processing period 

3 Implementation of Background Extraction in Applications 

Background extraction models have been applied in many surveillance application 

systems. The following are background extraction-based surveillance applications uti-

lized in various realms: 

3.1 Surveillance system of human activities 

In the last decades, surveillance systems of human activities have gained a remarka-

ble interest due to security concerns [95]. Many Surveillance application systems are 

exploited in terms of human activities [96]. The most common environment is trans-

portations environment which comprises, traffic sense for roads, highways, and air-

ports. The other environments include supermarkets and warehouses, Automated Teller 

Machine (ATM), and military environment [41][96]. The main target for such surveil-

lance applications is to detect and track the interested objects [8][97]. In traffic scenes, 

it is more common to detect the stopped vehicles or estimate the traffic density, whether 

it is empty or jam [14][98][99] and sometimes its required to count the vehicles number 

[100]. 
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Background extraction applications can also detect the congestion and can be applied 

to parking detection for free places [101][102][103] or legal parking [104][105].  More-

over, Human activities applications are applied for security purpose in trains and air-

ports to track the lost baggage. Marina [106][107][108][109][110] and stores 

[111][112][113][114][115] are other environments where human activities-based back-

ground extraction are used. 

3.2 Surveillance system of Nature 

In Nature surveillance system, the target is to detect or track an animal, insect or 

even an unwanted object in the nature environment like forests, rivers, and lakes 

[116][117]. The object detection and tracking are required in many studies that are con-

ducted for analyzing the behavior of these animals and insects. Different behaviors 

could be observed to evaluate the influence of animals to their places of plants or water 

[118][119][120][121] and to what extent can be affected by weather conditions and 

climate changes [122][123][124][125]. It is also critical for estimating the interaction 

among insects inside the same group, like in honeybee swarms [126] and 

mice[127][128]. Surveillance of endangered animals is one of the applications that is 

widely employed to monitor, track, and record their movements [129][130]. Automated 

nature surveillance system is playing an essential role for data collection used in the 

field of biodiversity. There is therefore a need for a convenient background extractions 

system to detect the foreground target which eventually enrich studies and help to pro-

tect Nature. 

3.3 Human Machine Interaction (HMI) applications 

Many applications are classified under HMI applications using background extrac-

tion, some are related with games where player can use a color webcam with 

PlayStation to detect motion, color, and gestures, which deals with virtual image or 

silhouette [41]. Kinect by Microsoft also uses different background extraction tech-

niques like GMM, KDE, codebook and others[131]. HMI is also applicable in art where 

graphic designers can use mocap sensors to track and record actor and object motions, 

then use the information to animate a digital model for the actor/object in 2D or 3D 

animations [132]. 

In virtual environment, many gesture recognition applications are applied, like sign 

language translation, human-machine interface, behavior analysis, robotics, telesemi-

nars, object manipulation and games [133]. The aforementioned applications require 

detecting and tracking the gesture of the hand as an example of human machine inter-

action applications using the background extraction techniques to detect the aimed ob-

jects [41][132]. 

3.4 Video coding and matting 

In teleseminars using digital movies and video phones, we only send the moving 

foreground with the key frame as content based [134]. The content usually consists of 
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semantic information like shape and texture where they called video object plane in 

MPEG-4. Background extraction is used in content-based video coding for a faster 

transmission in wireless networks [41]. For video matting the target is different, the 

background is subtracted from the input scene and substituted with another background. 

Thus, background extraction used as a first step in this process[135]. 

There are numbers of applications using the background extraction technique to de-

tect the foreground objects like in carried baggage detection [136], fire detection [137], 

organic light-emitting diode (OLED) defect detection [138] and obtaining approxi-

mated geometric model for the object [139]. All background extraction-based applica-

tions involve moving foreground detection and have their features that are related to 

challenges of camera location, foreground object type, and the environment. 

4 Background Extraction Based Environments 

Background extraction is applied in a variety of environments where video surveil-

lance system is employed. In each environment, there are many characteristics and as-

pects to be considered, different background scenes and different moving objects to be 

detected and eventually different challenges to be solved related to each individual en-

vironment. Video surveillance with stationary camera can be involved in the following 

environments: 

4.1 Human activities surveillance 

Background extraction and foreground detection has been employed in human ac-

tivities surveillance since the last two decades. Detecting the moving objects is our ma-

jor focus in this review, as for surveillance of human activities, the target is to automat-

ically detect the foreground objects and to compute the required statistics. Various ap-

pealing foreground objects can be detected like, individuals [140], vehicles [141], bag-

gage [136], planes [16], canoes [142] and products in warehouses  [143]. Obviously, 

there are many examples of human activities environments and they are as follows: 

1. Transportation scenes 

Traffic surveillance [144] is one of the most exposed transportation scenes, where 

background extraction is used to detect or track the foreground moving objects. Traffic 

surveillance includes highways and roads environments, the foreground detection can 

be employed to count stopped vehicles [14][15][98][99][141], estimating the road con-

gestion [104][105], or parking surveillance [101][102][103][145][146][147][148]. 

Traffic surveillance is affected by different factors, for example the camera location 

factor where most of the time it is a stationary camera. Sometimes traffic senses are 

aerial videos taken by a drone [149][150] or even high-resolution videos taken by a 

satellite [151][152][153].  Also, the quality of the camera is highly considered in terms 

of the video characteristics in traffic scenes. Most of the time, low-quality CCTV cam-

era comes with low number of frames which eventually affects the whole process of 

detection. Another factor is the environment itself and its challenges, like (shadows, 

lighting changes, dynamic background, etc.) these challenges can vary from one 
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environment to another. Foreground object of interest are different in their structure, 

actions, and colors. Automobiles, motorbikes, trucks, walkers, bicyclist are examples 

of these objects. 

Airport surveillance is an additional transportation scene where security is the main 

aspect of this environment. It is important to track and monitor the planes parking, fuel-

ing cars, luggage vehicles and workers. Different challenges arise due to environments 

like bad weather, lighting changes and non-uniform lighting. The color and shape of 

the foreground object is another challenge in airport surveillance scene.  Marine sur-

veillance is part of the transportation surveillance scenes. This surveillance is meant to 

track and monitor boats that normally observed in rivers, seas, and canals. Many papers 

have been done to address this environment using different approaches to detect the 

foreground objects based on background extraction techniques. Examples of these ap-

proaches are: Bayesian combined to segmentation method, independent background 

extraction to overcome the dynamic background challenge in water [154][155][156], 

GMM [157], median [158] and many others. The most challenging factor in the marine 

environments is the dynamic background due to water movements [41]. 

2. Warehouse scenes 

Warehouse surveillance is being one of the common demands in the marketing field, 

more specifically to study the customer behavior [159][160][112][113][114]. During 

shopping, customers may stay for a long time in a specific place checking a specific 

product. Sometimes it's needed to check on the numbers products left on the shelves 

[143], such information could be provided by the Radio Frequency Identification 

(RFID) tag [160] which normally attached to the product itself, but it is not always the 

best choice in terms of cost and time needed to attach the tag to each product. Thus, 

applying the background extraction techniques on videos taken by stationary camera 

can be an alternative solution used for that purpose [143]. 

3. Military scenes 

Military surveillance is crucial for security reasons, it is supporting the protection of 

country borders, bases, security checkpoints, and many others military sites. Military 

surveillance is into using sensors to detect the target in the battlefield. These sensors 

are either infrared camera [161] or a radar [162] to detect and monitor a vehicle, person, 

or both as a target. Many challenges arise here due to environment like (desert, forest, 

maritime, etc.)  or even due to bad weather like (snowing, raining, etc.) and lighting 

changes like night scenes.  In military surveillance, different background extraction 

models have been used to handle the foreground detection such as, median, temporal 

median and type2 fuzzy GMM [161][162]. 

4.2 Nature surveillance 

Nature is another surveillance environment where it covers the animals and insects' 

surveillance and other natural environmental scenes. Following is a brief description of 

the two types: 
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1. Animals and insects' scenes 

Plenty of researches have been done to study the behavior of animals and insects in 

a variety of environments. Background extraction technique is widely employed to 

monitor and track the detected foreground objects for analytical purposes. The analysis 

may consider the interaction of insects between each other in the same community like 

in honeybees [126] and the interaction with environments, like in birds with weather 

and climate changes [118][119][120][121][122]. Another purpose could be to study the 

behavior of animals that endangered, like in many species of wolf, fox, and castor 

[129][130].  

2. Natural environments scenes 

Nature surveillance sometime involve detecting the foreign objects in a specific na-

ture like in seas, rivers, forests, and oceans. The main purpose can be to protect that 

environment and its biodiversity. The foreground target could be any floating object 

like wood or bottles [116] [117][163][164]. 

4.3 Sport events surveillance 

Sport is another domain where the background extraction is applied. Decisions must 

be taken in many games like using the Hawk Eye system in tennis, surfing actions [165] 

and the recently used Video Assistant Referee (VAR) system in football. Background 

extraction is also applied in surveillance systems to follow up the athletes and body-

builders routines [166][167]. 

5 Background Extraction Based Challenges 

Background extraction has experienced many challenges due to implementations in 

various environments and due to different foreground targets. Background extraction 

challenges has been addressed in many papers, and can be classified into the following 

main challenges categories: 

5.1 Environment challenges 

Each environment has its characteristics and challenges, like in traffic and nature 

surveillance, the scenes are daily exposed to different weather and lighting changes 

during the day. Various challenges arise like shadow, illumination, and baseline. 

Whether in outdoor scenes like highway roads and pedestrian scenes or indoor scenes 

like office scenes [168]. Another most common challenge is the bad weather, it includes 

blizzard, skating issues, snowfall, and wet snow [33]. In marine surveillance environ-

ment, scenes face an additional challenge, they normally suffer from dynamic back-

ground caused by the movement of water like in fountains, lakes, and rivers [33][169]. 

All aforementioned challenges and many others are more associated with each individ-

ual environment making the detection of foreground objects harder. 
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5.2 Foreground target challenges 

The foreground target could be a challenge itself in many cases. One of the most 

common challenges is when the color of the target is similar or close enough to the 

color of the background which leads to false detections. Infrequent stops of the fore-

ground target (which is called sleeping foreground) is also another challenge [168]. The 

target becomes immobile as a part of the background for a certain period of time, like 

when vehicles stop in the road intersections or in heavy roads and traffic jams [170]. 

5.3 Background challenges 

The background scene encounters some challenges like intensity variation which 

leads to inaccurate histogram estimation [41]. Dynamic background is another common 

challenge to extract the foreground objects like in fountains, lakes and falls scenes. 

5.4 Camera challenges 

Many challenges are a result of the surveillance cameras issues. The position of the 

camera could be one of the issues where an environmental cause like wind can move 

the camera [171][172]. Another case would be the shadow, bad contrast, and long dis-

tance of the object [149][150] [173][174][175][176][177]. The video quality is also af-

fected directly by the camera low quality, low frame rate [178] and camera jitter [168]. 

5.5 Computation time challenges 

In the real time applications, reducing the computation time is one of the main met-

rics to be considered. Therefore, it is important to choose the suitable background ex-

traction model for each individual environment. For example, with traffic surveillance 

it is common to apply uni-models like basic methods of histogram and median due to 

their speed. 

6 Datasets 

The selection of a convenient dataset plays a crucial role in the evaluation of the 

various background extraction models. There are two types of datasets, the public and 

private. Private dataset is more specific to a single research where it is collected by the 

author him/herself. While public datasets are regularly available on the internet to be 

downloaded and used in research experiments. In this section, we list some of the most 

common public datasets with environments of visual surveillance of human activities 

and visual surveillance of animals and insects. In table 2 and table 3, we list the datasets 

with provided years, scenarios and scenes included, and reference links. 
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Table 2.  Visual surveillance of human activities datasets 

Visual Surveillance of Human Activities 

Dataset Dataset Scenario Limitation/ Privileges Reference Link 

Wallflower dataset  

named after wallflower 

Algorithm for background 
maintenance 

provided in 1999 [45] 

-Moved object 

-Time of day 

-Light switch 
-Waving trees 

-Camouflage 

-Bootstrapping 
-Foreground aperture 

This dataset is limited 

to a person detection 

with one Ground-Truth 
(GT) image by video 

https://www.re-

searchgate.net/figure/The-

Wallflower-dataset-sce-
narios_tbl2_263618322 

Institute for infocomm 
Research (I2R) dataset 

provided in 2004 [179] 

-Bootstrap 
-Campus 

-Curtain 

-Escalator 
-Fountain 

-Hall 

-Lobby 
-Shopping mall 

-Water surface 

This dataset did not 
cover a huge 

spectrum of 

challenges and the 
GTs are also limited 

to 20 by video 

https://github.com/I2RDL
2/ASTAR-3D 

Multicamera Human Ac-
tion Video (MUHAVI)  

dataset provided in 2010 

[180] 
 

 

 

 

 

 

Human actions  
-Walk turn back 

-Run stop 

-Punch 
-Kick 

-Shot gun collapse 

-Pull heavy object 

-Walk fall 

-Look in car 
-Crawl on knees 

-Wave arms 

-Draw graffiti 
-Jump over fence 

-Drunk walk 

-Climb ladder 
-Smash object 

-Jump over gap 

This dataset consists of 
human action video (Mu-

HAVi) ,8 cameras used, 

and 17 action classes per-
formed by 14 actors. It 

contains frames before and 

after the original action. 

This dataset is suitable for 

background extraction and 
tracking approaches 

http://velas-
tin.dynu.com/MuHAVi-

MAS/ 

Change Detection  

CDnet 2012 dataset 

provided in 2012 [169] 

-Baseline 
-Camera jitter 

-Dynamic background 

-Intermittent object mo-
tion 

-Shadow 

-Thermal 

This dataset 
comes with less 

scenarios. 

http://changedetection.net/ 

Change Detection  

CDnet 2014 dataset 
provided in 2014 [33] 

-Bad weather 

-Baseline 
-Camera jitter 

-Dynamic background 

-Intermittent object mo-
tion 

-Shadow  

-Thermal 
-Low frame rate 

-Night videos 

- PTZ  
-Turbulence 

It is the most 

applicable dataset 
due to extended 

scenarios. 

http://changedetection.net/ 
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Scene Background Initiali-
zation dataset (SBI) pro-

vided in 2015 [181] 

-Board 
-Candela_m1.10 

-CAVIAR1 

-CAVIAR2 
-CaVignal 

-Foliage 

-Hall & monitor 
-Highway I 

-Highway II 

-Human body2 

-IBMtest2 

-People & foliage 

-Snellen 
-Toscana 

This dataset comprises  
various scenes  

which included 14 images 

sequences with ground- 
truth and MATLAB  

scripts 

http://sbmi2015.na.icar.cn
r.it/SBIdataset.html 

Labeled and Annotated 
Sequences for Integral 

Segmentation Algorithm 

(LASIESTA) dataset  
provided in 2016 [182] 

-Bootstrap 
-Moving camera  

-Simulated motion 

-Illumination changes 
-Occlusions  

-Camouflage 

-Simple sequences 
-Modified background 

-Weather conditions  

This dataset consists of in-
door and outdoor scenes, it 

uses in both pixel-level 

and object-level, it is suit-
able for both moving ob-

ject detection and tracking 

objects approaches. It con-
tains scenes of static and 

moving cameras. 

https://www.gti.ssr.upm.e
s/data/lasiesta_data-

base.html 

Scene Background  
Modeling dataset  

(SBMnet) provided 
in 2016 [183] 

-Basic 
-Intermittent motion 

-Clutter 
-Jitter 

-Illumination changes 

-Background motion 
-Very long frame rate 

-Very short frame rate 

This dataset covers many 
indoor and outdoor 

challenges for  
surveillance, video  

database scenarios and  

smart environment. 
The dataset contains both 

personal videos and public 

collections. 

http://scenebackground-
modeling.net/ 

Scene Background  

Modelling for moving 

object detection on  
RGBD videos  

(SBM-RGBD) dataset 

provided in 2017 [184] 

-Illumination changes  

-Color camouflage  

-Depth camouflage 
-Intermittent motion 

-Out of sensor range 

-Shadows 
-Bootstrapping 

This dataset is collected  

for moving object  

detection on RGBD 
videos. It provides 

scenes, ground-truths,  

and evaluation scripts for 
various challenges 

http://rgbd2017.na.icar.cnr

.it/SBM-

RGBDdataset.html 
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Table 3.  Visual surveillance of animals and insects 

Visual Surveillance of Animals and Insects 

Dataset Dataset Scenes Reference Link 

Aqu@theque  

dataset provided  

in 2007 [185] 

Fish in tank https://sites.google.com/site/thierrybouwmans/recher-

che---aqu-theque-dataset 

Caltech resident 

intruder mice dataset  

provided in 2012 [186] 

Social behavior  

recognition of mice 

http://people.vision.caltech.edu/~dhall/projects/Merg-

ingPoseEstimates/ 

e Mammal dataset 

provided in 2013 [187] 

Camera trap sequences https://emammal.si.edu/ 

Fish4knowledge  

dataset provided 
 in 2014 [188] 

Fish in open sea http://groups.inf.ed.ac.uk/f4k/ 

Caltech Camera  

Traps (CCT) 

dataset provided 

 in 2018 [189] 

Sequences of images 

taken at approximately 
one frame per second  

for census and  

recognition of species 

https://beerys.github.io/CaltechCameraTraps/ 

7 Libraries 

Many libraries are employed in the field of background extraction and exploited for 

evaluations; we list the most well-known libraries in the following table 4. 

Table 4.  Background extraction libraries 

Libraries  Target Reference Link 

OpenCV 

[190] in 2018 

[191] in 2018 

It is cross-platform C and C++  

Library, it has more than 2500  

conventional and state-of-the-art 
computer vision and machine  

learning algorithms.  

https://opencv.org/ 

Background  

Subtraction (BGS) 

[192] in 2013 
[193] in 2014 

It is an extended OpenCV library 

with C++ framework, it has more 

background extraction algorithms. 

https://github.com/andrewssobral/bgsli-

brary 

Low-Rank and 

Sparse (LRS) 

[194] in 2016 

It is designed for video movement 

segmentation. It has various algo-

rithms 

of sparse and low rank decomposi-

tion  
written in MATLAB. 

LRS is also employed in computer  

vision with many tensor and matrix  
based algorithms. 

https://github.com/andrewssobral/lrslibrary 

Independent  

Multimodal 

Background 

Subtraction (IMBS) 

[155] in 2012 

[154][195] in 2014  

It is C++ library builds a multi-
modal  

method to overcome the lighting  

changes, dynamic background, and 
camera jitter, IMBS uses OpenCv 

functions. 

https://github.com/imbs-hl/ranger 
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Background 

Subtractor CNT 

[196] in 2019 

It is a library written in C++ and  
based On OpenCV, it applies the 

most 

rapid and high qualified algorithms.  
It is best suited for low hardware 

Specification. 

https://github.com/sagi-z/BackgroundSub-
tractorCNT 

8 Performance Evaluation and its Metrics 

Performance evaluation is classified into qualitative and quantitative evaluations. In 

qualitative, the visual results from interested dataset are compared by different back-

ground extraction algorithms, for example we evaluate the results of algorithms in re-

spect to some challenges like (shadow, camera jitter and dynamic background, etc.) and 

then decide the best performance visually. The qualitative evaluation gives a better per-

spective about the evaluation and shed the light on the subjective elements. 

On the other hand, the quantitative evaluation is done by using statistical measures, 

we compare the results of the performance metrics from background extraction algo-

rithms over a wide range of dataset, for example, we compare the algorithms F-

measures results in respect to some challenges of the dataset [7]. 

In qualitative evaluation, many performance metrics are applied to assess the robust-

ness of the background extraction algorithms to different challenges. True Positive 

(TP), True Negative (TN), False Positive (FP), False Negative (FN), Positive samples 

(P), Negative samples (N), Accuracy (recognition rate), F-measures(F1), sensitivity (re-

call), precision, Fβ, specificity, and error rate (misclassification rate) are used as eval-

uation measures. 

The F-measure, sensitivity (recall) and precision depend on the accuracy (recogni-

tion rate) to detect the foreground and background pixels. This is done by calculating 

the True Positive (TP) number which is the number of foreground pixels that is catego-

rized as a foreground. While False Positive (FP) is for background pixels which are 

categorized as a foreground. True Negative (TN) is for background pixels that are cat-

egorized as a background. Yet, False Negative (FN) is for foreground pixels that are 

categorized as a background. 

Recall is also used to calculate the truly categorized foreground pixels with respect 

to the number of all pixels categorized as a foreground. Precision on the other hand is 

measuring the truly categorized foreground pixels as a foreground to the total number 

of foreground pixels in the ground truth. Normally we measure the relevance by recall 

and precision. 

A low recall is an indication of over segmentation of the foreground objects, where 

a low precision is an indication of under segmentation of the foreground objects. High 

F-measures is an indication of a robust background extraction algorithm [7][197]. The 

set performance metrics are expressed in table 5. 
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Table 5.  The set performance metrics 

Performance Metrics Formula 

F-Measures 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Sensitivity(recall) 𝑇𝑃

𝑃
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Fβ, β is non-negative  
Real number 

(1 + 𝛽)2  ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Specificity 𝑇𝑁

𝑁
 

Error rate 𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
 

9 Conclusion 

In this article, we reviewed the background extraction models used to detect the 

moving foreground target in a video taken by a surveillance stationary camera. The 

review started with a brief introduction to the process stages of background extraction 

models (background initialization, background modeling, background maintenance, 

and foreground detection). 

We also reviewed the real-time applications in which background extraction models 

are applied, and we came across various environments with different challenges. The 

importance of choosing the suitable background extraction model for a unique environ-

ment or a challenge is highlighted, as in real-time applications, it is required to detect 

the foreground mask accurately and quickly. 

Moreover, in real-time applications, we concluded that the conventional and some 

statistical models for the background extraction models like (mean, median, GMM, and 

histogram) are still dominant in the foreground detection field, and this is due to the 

fact that these approaches are requiring less time, less memory and less computation 

consumption. Conventional models are also well-known and well-experimented ap-

proaches that make them easier to adapt compared to state-of-the-art models. On the 

other hand, state-of-the-art models like deep learning and CNN models achieve good 

results in terms of accuracy and solving challenges. Therefore, there is no single back-

ground extraction model that can handle all the challenges in different environments, 

so there are numerous works that fused more than one approach to overcome the chal-

lenges and develop the performance. 

Furthermore, we presented helpful tables of datasets and libraries used in implement-

ing background extraction models. Eventually, we elaborated on the performance eval-

uation (qualitative and quantitative), so as the set performance metrics used to evaluate 

the background extraction models. 
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