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Abstract—Drug-resistant focal epilepsy is the failure of antiepileptic drugs 

schedule to obtain epileptic free brain activities. In human brain cerebrum or 

cerebral hemispheres are the most commonly involved brain regions in 

epilepsy. In case of antiepileptic drugs failure, surgical treatment is the best cure 

possible for which correct localization of epileptogenic region is a challenging 

task for neurologists as well as for computer scientist for automatic localization. 

This research work’s aim is to explore the functional activities of all brain 

regions in drug-resistant focal epileptic patients and achieve high accuracy for 

the classification of epileptogenic region (ER) with the high-density 

electroencephalographic (hdEEG) data. The proposed system includes 

frequency analysis for feature extractions followed by individual subject’s 

registration of hdEEG signals with anatomical brain images for most precise 

localization of ER possible. The datasets attained from feature extraction 

process are then preprocessed for class imbalanced and then evaluated using 

different machine learning domains including the techniques under Bayesian 

networks, Lazy networks, Meta techniques, Rule based systems and Tree 

structured algorithms. Considering human brain both as stationary object as 

well as dynamic object, frequency-based and time frequency-based features are 

considered in 12 subjects respectively. Through this novel approach 99.70% 

accuracy is achieved to classify ER from healthy regions using KSTAR and 

IBK algorithm and 91.60% accuracy has been achieved to classify generator 

from propagator regions by applying IBK algorithm. 
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1 Introduction 

Epilepsy is complicated brain disease, which causes unpredictable functional 

activities of brain. These interruptions of normal brain functions are known as 

epileptic seizures. Epileptic patients face multiple frequencies of seizures, which are 

unprovoked. In some cases, this disease is cured by medicines but in some cases 

antiepileptic drugs do not work. In case of antiepileptic drugs failure, the main 

problem in the domain of epilepsy treatment is the identification of epileptic zone in 

the brain for a correct analysis and treatment. For such analysis, Brain of the patients 

are observed through multiple imaging techniques including magnetic resonance 

imaging (MRI), Diffusion spectrum magnetic resonance imaging (DSI), Diffusion 

Tensor Imaging (DTI) and many more. Diseases such as Epilepsy damage the brain 

cells and effect patient’s daily life. Unlike other structural damages of the brain, 

identification of the brain zones generating or propagating the unhealthy signals 

(causing epilepsy) is much difficult. The abnormal functional and effective 

connectivity between different regions of the brain can be analyzed through fMRI, 

EEG, MEG and many other functional imaging techniques. Moreover, surgical 

procedures are mostly followed which are costly and even more challenging [1]. 

Therefore, especially in the epileptic patients who are drug resistant, it is important to 

identify correct epileptic region, before proceeding towards surgical evaluation.  

Detection of epileptogenic zone through conventional scalp EEG system does not 

provide promising results especially for the frontal lobe epilepsy patients because of 

the fast cortical spread and artefacts caused by muscle movements [2]-[4]. In case of 

negative-MRI, mostly patients recommended and went through by intracranial EEG 

(iEEG). To get succeeded in the iEEG process with optimal number of intracranial 

electrodes, the most challenging and vital part is the correct identification of the 

epileptogenic region [5], [6]. However, high-density EEG increases the vision of 

whole neural network by covering most of the scalp area [7]. To overcome the risks 

involved in iEEG, hd-EEG played an important role to understand the neural network 

and the effective connectivity, abnormal electrical activities, spikes, seizures and 

clinical manifestations in different cortical and sub-cortical brain regions [8], [9]. The 

visual study of hd-EEG in focal epilepsy patients can provide a good improvement in 

localization of epileptogenic zone [9] but the problem with visual analysis is the 

requirement of expert’s review which is not optimal automated solution. 

In new era of artificial intelligence and machine learning, promising results are 

observed in current literature to analyze neural networks. Many studies have been 

carried out for the application of Machine learning on seizure detection and epileptic 

localization, however, ignoring the challenges while working on the complex datasets 

of neurological disorder. The most common classifiers for instance SVM [10, 11, 12], 

K-NN [13, 14], CNN [15-17], DT [18] and DF [19] has been applied for seizure 

detection, and localization using limited databases [20, 21]. The classifiers like K-NN 

is one of oldest classifiers that uses a simple logic to determine the output on the basis 

of k-nearest neighbors from feature set [22]. However, the main problem with k-NN 

is the majority voting especially when the data is skewed resulting into biased results 

for most frequent data sample. However, SVM is a binary classifier that make binary 
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decisions. The problem with SVM is, it cannot make decision in case of nonlinear 

function without a kernel. The ADTree on the other hand creates a decision tree 

modified by boosting and is applied to two class problems. IB1, IBK and Kstar are 

simple instance-based learners that predicts the target class. RIDOR (Ripple down 

rule learner), on other hand, is a rule-based classifier that can classify data of various 

kind. In contrast, this research has been focused on using Bayes Network, Naïve 

Bayes [23], RBFNetwork [24], IB1, IBK, Kstar, Ridor, ADTree [25] classification 

techniques over High density complex EEG data. Due to the limitations and 

applicability of different classifiers, only these set of classifiers has been selected for 

the final experimentation purpose. To work with machine learning techniques the vital 

part is features selection. Features can be selected through channel based deep 

learning, image processing, signal processing or by using any statistical implications 

[26], [27]. For abnormal zone localization, EEG is analyzed per individual channels, 

with respect to individual frequency band. Moreover, classification techniques were 

used with all possible combinations and folds of EEG based plus relevant clinical 

features of the patients [28]. 

In this research work we presented a region-based analysis approach for the 

classification of epileptic brain regions from the healthy brain regions. For this 

purpose, high density EEG data is mainly considered to analyze the patients with 

focal epilepsy who were suggested for surgical treatment after the failure of 

antiepileptic drugs. For a better registration of EEG frequency signals on brain 

regions, each patient’s personal anatomical images (MRI) are considered and 

registered with the Harvard-Oxford atlas (HOA) atlas. Considering the feature 

extraction, the most vital part of this approach, Fourier and Wavelet transform 

features are extracted for each brain region. As it is well known, frequency-based 

connectivity methods are based upon the spectral characteristics of the physiological 

signals and are able to differentiate causal interactions within specific frequency 

bands of interest [29],[30]. Instead, we hypothesize that the application of time-

variant methods (e.g., ADTF) to EEG signals would allow capturing the dynamic 

evolution of the activity and characterizing the outgoing and ingoing information flow 

between different regions during an epileptic event.  

This work is based on the estimation of functional connectivity in epilepsy 

allowing the identification of driving sources that are involved in inter-ictal activities 

as well as in the generation of seizure using EEG data. The region that is involved in 

the generation of the seizure is called generator while the propagator is the area which 

is normal healthy brain area without seizure. This study is divided into two groups of 

analysis, one to identify the epileptogenic regions from healthy regions and second 

the extraction of generator regions from propagators or healthy regions. Under both 

group of analysis, multiple experiments have been taken into account to cover all 

analytical aspects. The presented approach is implemented using different open-

source software commonly available like MATLAB 2019, Brainstrom 3 and a 

comprehensive library of analysis tool known as FSL [31]. It is used for efficient 

analysis FMRI, MRI and DTI brain data. 

The rest of the paper is organized as follows: The details of the proposed 

epileptogenic regions localization approach are explained in “Methodology” section. 
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The Analyzed results of all the experiments are presented and discussed under the 

“Results” head. The approach presented in this paper with its outcome is then 

concluded in “Conclusions” section. 

2 Methodology 

2.1 Sample selection 

Participants selected for this study are 12 patients diagnosed with drug resistant 

focal epilepsy including five male and seven female patients aged between 20 to 68 

years. Patients were suffering from this disease from past 2 to 48 years. The average 

seizure frequency was 3.2 per day ranging between 1 per day to 30 per day.  

All the patients were recommended for surgery and were admitted for the pre-

assessments. To identify seizure semiotics, neurophysiological investigations 

including video-EEG, hdEEG [256-channel], arterial spin labelling (ASL), and 

electrical source imaging (ESI) has been performed. With the neurophysiological 

investigation techniques different advanced neuroimaging modalities were also 

analyzed to accurately localize epileptogenic zone. All the findings including 

neurophysiological and neuroimaging are presented in detail in [32], [33]. The 

modalities considered for this research are hdEEG, MRI, ESI and ASL with the major 

focus on hdEEG with actual MRI based atlas registration. 

2.2 Data acquisition 

High-density EEG with 256 channels (Electrical Geodesic, Inc., Eugene, OR) was 

performed by following international 10/20 system to evenly place electrodes on scalp 

surface. The hdEEG data were recorded with respect to a reference electrode (Cs). 

The sampling rate selected for recording was 250 Hz. All the patients were guided to 

be in the rest position. The hdEEG recordings were further inspected and averaged 

with respect to peaks of spikes identified by expert neurophysiologist.  

To study the dynamics of multiple brain regions, Harvard-Oxford atlas has been 

used. HOA divides the brain into 112 cortical and subcortical regions of interests 

(ROIs). To maintain every patient’s individual peculiarities, HOA was registered on 

individual anatomical space perceived through each patient’s T1-weighted MRI 

images as shown in figure 1(c). A source waveform for each ROI was calculated by 

averaging all the time series within the region represented in figure 1(e). The hdEEG 

data localization, registration of atlas with the patient’s anatomical space and then 

finding of average time series for each ROI was evaluated by Brainstorm software 

[34]. Full process of Data acquisition through hdEEG including MRI brain 

registration, HOA atlas, Atlas registration, spike average calculated for each ROI and 

separate EEG spike of each region extracted of subject 1, are represented in figure 

1(a-e) respectively. 
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Fig. 1. Hd-EEG data mapping on subjects.01 individual anatomical image. a) Hd-EEG cap 

registration on subject’s scalp surface. b) Harvard-Oxford atlas. c) HOA registered  

MRI based individual head surfaces. d) 3T anatomical MRI used for the registration of 

individual brain anatomy with the atlas regions and associated electrode spikes.  

e) Average oscillation of all brain regions. f) Average spike of one ROI. 

2.3 Region of interests 

This study is divided into two groups of analysis as shown in Fig. 2; Group-I) Full 

brain analysis for the classification of healthy region (HR) and epileptogenic region 

(ER), Group-II) Brain’s functionally active zone analysis for the prediction of 

Generator region (GR) among the Propagator Regions (PR). 

 

Fig. 2. Two groups of Analysis. a) Full Brain Analysis.  

b) Brain’s functionally active zone analysis 
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For first group of analysis common 104 regions of all patients are selected based 

on HOA. For all ROI hdEEG average time series data is considered as shown in 

figure 1(e, f). For the analysis of second category, Five ROI based on the semeiotics 

from HOA of both Hemispheres for each patient is taken into consideration. These 

regions selection was based on previous research done by [8] which has shown the 

contribution of these regions independently as well as their effect in the form of a 

network. For each ROI, their Mean values of blood flow (CBF) and current density 

(CD) are also considered which were calculated previously for the research done by 

[32] and [33]. The most common brain regions involved in the functionally active 

zone analysis are listed in table 1.  

Table 1.  Common brain regions involved in the second category of analysis 

Sr. Label Name 
No. of Voxels in 

left hemisphere 

No. of Voxels in 

Right hemisphere 

1 IFGo Inferior frontal gyrus, pars opercularis 236 200 

2 IFGT Inferior frontal gyrus, pars triangularis 189 164 

3 STGP Superior temporal gyrus, posterior division 119 118 

4 MTGP Middle temporal gyrus, posterior division 403 390 

5 MTGTo Middle temporal gyrus, temporo-occipital part 252 348 

6 TP Temporal pole 707 691 

7 STGa Superior temporal gyrus, anterior division 84 83 

8 ITGa Inferior temporal gyrus, anterior division 103 103 

9 FOrC Frontal orbital cortex 496 437 

10 H Hippocampus 224 210 

11 ITGto Inferior temporal gyrus, temporo-occipital part 211 237 

12 MTGa Middle temporal gyrus, anterior division 128 126 

13 ITGp Inferior temporal gyrus, posterior division 296 172 

14 FP Frontal pole 2045 2377 

15 FMC Frontal medial cortex 116 123 

16 FOpC Frontal operculum cortex 102 91 

17 TFCa Temporal Fusiform Cortex, anterior division 98 86 

18 CoC Central opercolar cortex 278 267 

19 PP Planum temporale 163 140 

2.4 Feature extraction 

For machine-learning data is the key to success however, the most difficult 

challenge is to apply it on medical images. Majority of medical imaging modalities 

are costly, time consuming and hectic especially for patients. For this study we tried 

to identify most optimal feature set using the above ROIs. We considered all possible 

features attained from any modality of all the subjects including demographic features 

as well as clinical. Some features are based on patients’ demographic information like 

age, gender, epilepsy frequency etc and majority is with respect to each ROI obtained 

from functional imaging modalities. From hdEEG time series data, features are 

extracted with respect to different frequency bands as follows: Uper delta band (2-4 

Hz), theta band (4-8 Hz), alpha band (8-12 Hz), beta band (12-30 Hz), and gamma 
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band (30-50 Hz). For each frequency band of each ROI, Fast Fourier Transform 

(FFT) and Continuous Wavelet Transform (CWT) is calculated. The FFT is a feature 

to represent the average frequency response in each band of each ROI. Equation (1) 

represents the delta band average frequency response (similar to all other selected 

frequency bands) is calculated as follows: 

 𝛥𝑖 =
∑𝑓𝑛𝛥𝑖

𝑘=𝑓𝑠𝛥𝑖 |𝐴𝑘  |

𝑓𝑛𝛥𝑖−𝑓𝑠𝛥𝑖 
 (1) 

where the starting frequency and maximum frequency in delta band is 𝑓𝑠𝛥𝑖 and 

𝑓𝑛𝛥𝑖 respectively in a ROI 𝑖. 𝐴 is the Fourier coefficient for the input delta time 

series. Same method is applied for all band frequency responses calculation for all 

regions. After considering human brain as stationary system by calculating FFT 

feature considering brain as non-stationary dynamic system Continuous Wavelet 

Transform (CWT) features have been calculated. Continuous Wavelet Transform for 

Delta band (CWTΔ) calculation is represented in equation (2) as follows: 

 𝛥𝑖 =
∑𝑡𝑛𝛥𝑖

𝑙=𝑡𝑠𝛥𝑖 ∑𝑓𝑛𝛥𝑖
𝑘=𝑓𝑠𝛥𝑖 |𝑋𝑙,𝑘 |

(𝑡𝑛𝛥−𝑡𝑠𝛥)(𝑓𝑛𝛥𝑖−𝑓𝑠𝛥𝑖) 
 (2) 

Where for the 𝑖th ROI, the starting frequency and maximum frequency in delta 

band is 𝑓𝑠𝛥𝑖 and 𝑓𝑛𝛥𝑖 respectively where as 𝑡𝑠𝛥 and 𝑡𝑛𝛥 is the starting and ending 

time of the delta time series. The Current Density (CD) and Cerebral Blood Flow 

(CBF) are also considered as clinical feature for brain active zone analysis. Current 

Density is calculated from ESI modality, whereas CBF is calculated from ASL 

modality by performing the equation (3) defined by [32] in detail. 

 𝐶𝐵𝐹 =  
∆𝑀

2𝛼𝑀𝑜𝑏𝑇𝐼1𝑒
−(𝑇𝐼2+(𝑛−1)𝑠𝑙𝑖𝑐𝑒𝑡𝑖𝑚𝑒)

𝑇1𝑏

 (3) 

where ∆𝑀 is the difference signal, 𝑀𝑜𝑏 is the equilibrium magnetization of blood 

estimated from the calibration scan, 𝑇𝐼1 and 𝑇𝐼2 are the sequence time parameters, n 

is the number of a given slice, 𝑠𝑙𝑖𝑐𝑒𝑡𝑖𝑚𝑒  is the time taken to acquire each slice (~40 

ms), 𝑇1𝑏 is the longitudinal relaxation time of blood (1664 ms at 3T), and α is the 

inversion efficiency (0.95 for pulsed ASL) [32]. As a demographic feature, age, years 

since beginning of the epilepsy, sex and seizure frequency per day of all the patients 

are considered in features set. All the ROI are then carefully labelled as HR or ER, to 

apply machine-learning techniques. In total 16 features were gathered for each 

participation. 

2.5 Classification analysis 

After finalizing all the calculations of feature data set, different type of analysis has 

been made to assess the role of these features to localize the epileptogenic zone. 

Full brain analysis (Group-I): For localizing the epileptogenic region, using 

machine-learning techniques, representations of both classes are equally important 

therefore all 104 healthy and unhealthy ROIs are considered to train the model. For 
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each ROI all 14 features including FFT and CWT features are considered. Under this 

group of analysis three types of experiments has taken place. 1) Considering only 1 

region as epileptogenic ROI (ER) whereas all other are considered as healthy regions, 

2) Considering most active 10 regions from both hemispheres as unhealthy 

participation in brain activity while others as healthy ROI and 3) Considering most 

active 5 regions belong to only one of the hemisphere identified as the epileptic 

hemisphere, as ER. The types of experiment under Group-I are presented in Fig.3. 

These all experiments are defined to assess the effectiveness of this research method 

for the most accurate localization possible using hdEEG and demographic data. 

 

Fig. 3. a) Experiments under Full Brain Analysis. b) Exp-1: 1 ER.  

c) Exp-2: 5 ER of both hemispheres. d) Exp-3: 5 ER of one hemisphere. 

Functionally active brain zone analysis (Group-II): Epileptic region localizing 

problem is not only localization of brain zone but also the exact region localization 

under the effected zone to further proceed for the surgical treatment. From all the 

subjects 10 regions are considered which were actively participating in brain 

functionality while performing hdEEG in both hemispheres. Only 1 ROI is consider 

as ER and the rest of 9 ROIs are considered as HR. Along with hdEEG features, ESI 

and ASL features are also considered to more precisely classify generator and 

propagator regions among the functionally active brain zone. These regions selection 

and labeling is based on earlier findings in [8, 32, 33].  

For this group of analysis, 16 features of all ROI of each subject including FFT, 

CWT, CBF and CD are considered. To analyze the contribution of CBF and CD 

features in correct classification of generator as ER and propagators as HR two types 

of experiment has taken place under this group of analysis. 1) With CD and CBF 

features, 2) Without CD and CBF features.  
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Classification methods: After the construction of three full brain analysis and two 

active brain analysis datasets, different classification techniques with 10-fold cross-

validation have been applied. These experiments are done by Weka version 3.8.3 [35]. 

For finding the most suitable classifier for the considered domain and under the 

complexity of features set, more than 25 classifiers from different classification 

domains like bayes, Lazy networks, Meta, Rule based and Tree structured were 

considered. Among them 9 classifiers i.e. Bayes Network, NaiveBayes [24], 

RBFNetwork [25], IB1, IBK, Kstar, Ridor, ADTree [26] and Ordinal CC are 

considered for comparative analysis because of their outperformance than others. 

Evaluation and visualization: Using the above methodology, we have taken the 

five different experimental datasets including 3 from Group-I and 2 from Group-II as 

explained above. Initially, the data is having less numbers of effected regions in 

comparison to unaffected regions hence, creating class imbalance. It leads to the 

biased results as the classifier always focus on the majority class and produce high 

accuracies for it while producing the poor results for minority class. Therefore, class 

imbalance issue is being solved in this research using SMOTE [36]. 

For evaluating the classification result, 10-fold cross-validation has been used. To 

evaluate the performance of the classification models following measures have been 

calculated 

1. Accuracy 

2. Recall 

3. F-Measure 

3 Results 

While comparing different type of classification methodologies and techniques, 

time complexity measurement and space complexity measurement are two key factors 

to be analyzed.  

The classification results for each experiment under both groups of analysis can be 

seen in Table 2 and Table 3. It is noticeable that, for all experiments of both 

categories, the classification algorithms produce high classification accuracy with 

high percentage of recall and F-measure. However, it can be noted that the highest 

classification accuracy is achieved by the Kstar Classifier i.e. 99.79% accuracy with 

99.6% Recall and 99.8% F-Measure in experiment 1 of Group-I where the affected 

area as ER is localized to only one region.  
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Table 2.  Results; Classifiers Accuracy, Recall and F-measure  

percentage achieved in all experiments. 

ML. 

Algorithms 

Group-I: Full Brain Analysis 

Exp1 Exp2 Exp3 

Accuracy Recall 

F-

Measure Accuracy Recall 

F-

Measure Accuracy Recall 

F-

Measure 

BayesNet 99.3 99.6 99.3 92.2 96.7 92.6 95.4 98.3 95.5 

NaiveBayes 99.3 99.7 99.3 91.9 96.7 92.3 95.4 98.3 95.5 

RBFNetwork 99.4 99.7 99.4 84.4 97.2 86.2 79.3 98.5 82.6 

IB1 99.5 99.6 99.6 77.3 96.4 81 84.4 98.1 86.3 

IBK 99.7 99.6 99.7 83.5 95.3 85.2 80.6 98.1 83.5 

Kstar 99.7 99.6 99.8 81.1 95.8 83.6 80.3 98.2 83.3 

Ridor 99.5 99.2 99.5 95.6 91.2 95.4 97.4 95.2 97.4 

ADTree 99.5 99.5 99.5 86.7 76.1 85.2 97.4 95.4 97.4 

Table 3.  Results; Classifiers Accuracy, Recall and F-measure  

percentage achieved in all experiments. 

ML. Algorithms 

Group-II: Active Brain Analysis 

Exp1 Exp2 

Accuracy Recall F-Measure Accuracy Recall F-Measure 

BayesNet 75.4 76.9 75.8 51.8 31.5 39.5 

NaiveBayes 70.8 83.3 74.1 - - - 

RBFNetwork 73.1 78.7 74.6 54.1 65.7 58.9 

IB1 76.4 74.1 75.8 87 83.3 86.5 

IBK 76.4 66.7 73.8 91.6 83.3 90.9 

Kstar 79.1 75.9 78.5 82.8 65.7 79.3 

Ridor 77.7 78.7 78 84.7 73.1 82.7 

ADTree 81.4 82.4 81.7 89.8 80.6 88.8 

 

For the cross validation of the proposed system of epileptic region localization 

using machine learning the average outcomes are also analyzed. The average accuracy 

in all experiments lied between the ranges of 69.34% to 99.54% as represented in 

table 4. By considering all the measures i.e. Accuracy, Recall and F-Measure, by 

considering average of all the classifiers, experiment 1 of Group-I outperformed all 

other experiments in both groups. 

Table 4.  Average Accuracy, Recall and F-measure percentage in all experiments. 

Average Measures 
Group-I Group-II 

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 

Accuracy 99.52 86.62 89.49 76.39 69.34 

Recall 99.50 93.19 97.41 77.48 60.79 

F-Measure 99.51 87.66 90.72 76.67 67.18 

 

However, with Fourier and Wavelet transform features, density of current flow and 

blood flow are also considered for the classification of generator from propagators 

within epileptic brain zone which reflected decline of accuracy from 76.39% to 

82 http://www.i-joe.org



Paper—Localizing Epileptogenic Zone from High Density EEG Data Using Machine Learning 

69.34% on average among multiple classifiers. There is no significance of CD and 

CBF features is observed because the majority of the areas considered were already 

identified by increasing CD and decreasing CBF values trend as compared to healthy 

controls by [16]. There is no such distinguishing factor of these values among the 

considered regions to classify genrator verses propgators in Experiment 2 of active 

brain analysis (Group-II). These features can be of massive participation if would be 

used for full brain analysis (Group-I) experiments to classify ER(s) from HR(s) which 

is not easily applicable because of clinical limitations. 

On average the recall percentage lied between the ranges of 60.79% to 99.50% 

whereas the average F-measure lied between the ranges of 67.18% to 99.51%. The 

highest rate of accuracy, recall and f-measure is achieved in experiment 1 as listed in 

table 3. For experiment 2 and 3 of Group-I analysis and experiment 1 of Group-II 

analysis, more recall percentage is achieved as compared to accuracy and F-measure 

whereas in experiment 1 of Group-I, same results are achieved for accuracy, recall 

and f-measure and in experiment 2 of Group-II, high accuracy is achieved as 

compared to recall and F-measure. 

Fig. 4 represents all the measures calculated in all experiments for this research 

work as a spiral graph. As shown in the figure 3, experiment 1 of Group-I 

outperformed in all the measures and touched the upper bound near 100% 

achievement. 

 

Fig. 4. Accuracy, Recall and F-measure comparison for different classifiers. a) Full brain 

analysis considering one ER. b) Full brain analysis considering ten ER(s) across both 

hemispheres. c) Full brain analysis considering five ER(s) of one hemisphere.  

d) Active brain analysis including CD and CBF measures.  

e) Active brain analysis without CD and CBF measures 
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4 Conclusion 

A novel approach for the localization of epileptic region is presented in this 

research to classify epileptogenic brain regions from healthy brain regions based on 

high density EEG data using different open source softwares like MATLAB 2019, 

Brainstrom 3 and FSL. This approach is based on rich features extracted through 

signal processing and classification using several machine learning algorithms. This 

research is majorly divided into two categories; 1) classification of epileptic region 

from healthy brain regions, 2) classification of generator region from the propagator 

regions of epileptic brain zone. The results of this research validated both approaches 

by achieving the classification accuracy up to 99.5% in first category by only 

considering features based on hdEEG epochs of 1 second each. Whereas the results of 

this research also validated the contribution of features like blood flow (CBF) and 
current density (CD) are extracted from other modalities such as ESI and ASL to 

classify generator regions from the propagator regions with the classification accuracy 

of 91.6%.   

To conclude, the approach adopted in this research for the localization problem of 

the drug resistant focal epileptic patients, high accuracy has been achieved using 

multiple machine learning algorithms. Fourier transform features and wavelet 

transform features are the major contribution in feature set for full brain classification 

into ER and HR. This research can be further explored for the more accurate 

classification of generator from the propagator regions by considering multiclass 

classifiers and features from other clinical biomarkers. 
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