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Abstract—In agriculture, weeds cause direct damage to the crop, and it 

primarily affects the crop yield potential. Manual and mechanical weeding 

methods consume a lot of energy and time and do not give efficient results. 

Chemical weed control is still the best way to control weeds. However, the 

widespread and large-scale use of herbicides is harmful to the environment. Our 

study's objective is to propose an efficient model for a smart system to detect 

weeds in crops in real-time using computer vision. Our experiment dataset 

contains images of two different weed species well known in our region strained 

in this region with a temperate climate. The first is the Phalaris Paradoxa. The 

second is Convolvulus, manually captured with a professional camera from fields 

under different lighting conditions (from morning to afternoon in sunny and 

cloudy weather). The detection of weed and crop has experimented with four 

recent pre-configured open-source computer vision models for object detection: 

Detectron2, EfficientDet, YOLO, and Faster R-CNN. The performance 

comparison of weed detection models is executed on the Open CV and Keras 

platform using python language. 

Keywords—Precision agriculture, Weed Identification, Deep learning, Object 

detection, Open cv 

1 Introduction 

Object detection is one of the most active fields of research in computer vision, 

where it involves both object classification, classifying every object in the image, and 

object localization [1]. Agriculture is a field affected by these innovations to promote 

production and guarantee food security [2]. Therefore, the thinking on a set of more 

developed systems based on the detection of objects in real-time, such as autonomous 

robotics for weed spraying, livestock detection, and vehicle safety, has become 

necessary. In our case, the focus is on the identification of weed from crop because of 

its great importance in precision farming, as weed act as a pest to crop and competes 

for space, nutrients, water, light and hinders the growth of crops in the field. The 

conventional way of eliminating weed is to spray herbicides or manual plucking [3]. 

The manual weed removal method is a tedious task, as it needs vast labor work. Usage 

of herbicides harms the health of living beings and the surrounding environment. 
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Hence, there is an urge to automate the process of weed identification. An approach 

based on deep learning is proposed to differentiate crop from weeds in real time to 

contribute to a localized spraying system so as not to distribute the herbicides on a large 

scale. The approaches based on convolutional neural networks are, to date, the most 

efficient models, and thanks to transfer learning, we can use a pre-existing model 

trained on a vast dataset for our tasks [4]. Consequently, reducing the cost of training 

new deep learning models, and since the datasets have been vetted, we can be assured 

of the quality. Therefore, we try to train four recent models in our custom data to know 

the important factors for obtaining the best results and choose the best of theme in terms 

of accuracy and efficiency. In addition, try to implement it on an intelligent system 

based on Raspberry [5]. 

This article will define the architecture of the four open-source models, Detectron2, 

EfficientDet, YOLO, and Faster R-CNN. We will apply these models based on images 

collected directly from fields, and then we will compare them in terms of precision and 

error to choose the best. For this, we will work with the Tensorflow and Keras libraries 

for learning and object detection [6]. To improve the models' performance, we will use 

some efficient techniques such as data augmentation and propose methods to speed up 

our model. In the final section, we make a comparison between these sets of methods 

in accuracy and speed. 

2 Research Method 

In this section, we will define the Methods, Software, hardware, and libraries used 

in the experiment, passing through the dataset necessary for our models' training. 

2.1 Tensorflow 

In November 2015, Google developed a new programming framework (framework) 

for numerical computation, called TensorFlow, and made it open source. This 

framework is intended, particularly for machine learning and artificial intelligence 

technologies, from which its "Tensor" nomination was inspired. Tensors are multi-

dimensional data tables that manage common operations on neural networks. It is a 

Matrix. Gmail, Google Photos, and Voice Recognition can be used as an illustration of 

the TensorFlow application [7]. 

2.2 Keras 

A very intuitive library of Deep learning in python, or what François Chollet called, 

in 2017, Keras. This high-level neural networks API allows you to create and train deep 

learning models. Thus, it is used in rapid prototyping, advanced research, and going 

into production. Keras aims to go from idea to result in a short time, under the 

ONEIROS project (open-ended Neuro-Electronic Intelligent Robot Operating system). 

However, as its founder explained, Keras is designed as an interface that presents a 
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higher-level, more intuitive set of abstractions that make it easy to configure neural 

networks independent of the back-end computer library [8]. 

2.3 Python  

The Python programming language is widely used in deep learning. Its code does 

not need to be compiled to work. It is a high-level language interpreted and oriented, 

allowing a reasonable reduction of the cost of maintaining the codes and encouraging 

them the modality and the reusability. The Pythons libraries are Free for the majority 

of platforms [9]. 

2.4 Hardware configuration used in the implementation 

An efficient implementation of an Object Detection Models will be valid according 

to precise hardware conditions. For our case, we used an HP i7 CPU 2.40 GHZ laptop 

pc, with Nvidia GeForce GT525M graphics card, a size of 8 GB concerning the RAM, 

and hard disk of size 500GB. 

2.5 Object detection methods based on deep learning 

For our study, we will exploit our models' power thanks to transfer learning methods, 

which allow us to use the learning acquired on a general classification problem to apply 

it again to a particular problem [10]. Research teams specializing in improving CNNs 

provide these models. They publish their technical innovations, as well as the details of 

the networks trained on reference databases. For example, the COCO test-dev set, 

ImageNet challenge (ILSVRC), can arrange object detectors in two main categories; 

Two-stage detectors, such as Faster R-CNN, have a region-of-interest proposal step and 

another final classification and bounding-box regression of objects taking these regions 

as input. Single-Stage Detectors such as YOLO, EfficiendDet, Detectron2[11] consider 

object detection a simple regression problem learning the class probabilities and 

bounding box coordinates from input images. 

EfficientDet: A new version of Efficientnet, EfficientDet, is a model for real-time 

object detection via a personalized detection and classification network. It is smaller, 

weighing 17MB. It is an open-source neural network model for the image detection 

computer vision task. However, it is published initially in the TensorFlow and Keras 

platforms, then in Pytorch. EfficientDet versions vary from EfficientDet B0 to B7[12], 

the last version of EfficientDet-D7 achieves 55.1 [11].  

Faster R-CNN: In 2014, Ross Girschick et al. invented a method of object detection 

named R-CNN series and improved with faster R-CNN [13]. This is a more precise 

method. It is a two-step deep learning object finder, namely: 

• Identification of regions of interest 

• Transmission to a convolutional neural network 
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Classification is done through the transmission of the produced feature maps to an 

SVM support vector machine, thus, the computation of the regression between the 

predicted bounding boxes and the ground truth bounding boxes. Faster R-CNN has an 

AP of 34.9 to 36.8 on test-dev coco [14]. 

YOLOv5: Yolo is an "acronym referring to the English expression you only look 

once"1. It is a system addressed to detect objects in real-time from the images at 30 fps. 

It has had an improved AP (49.2 to 50.1) on test-dev coco. Yolov5 is a continuation of 

the recent versions of the YOLO series. It is smaller and generally more comfortable to 

use in training. Changing its architecture and exporting to many deployment 

environments is just as easy. This series, published by Glenn Jocher on June 9, 2020, is 

implemented in PyTorch [15].  

Detectron2: The detection of key points, the detection of objects, and the semantic 

segmentation are part of the priority area of interest of Detectron2. It is a system written 

in Pytorch and contains improved versions of faster R47-CNN, Mask R-CNN, 

Retinanet, and Denspose. Likewise, it does support the rapid implementation and 

evaluation of new computer vision research, which is why it was invented by Facebook 

AI Research (FAIR). Its AP can reach 64.31 on COCO test-dev [16]. 

Below we illustrate the results of the four models object of our study (Detectron2, 

EfficientDet, YOLOv5, Faster R-CNN) on COCO test-dev in terms of Average 

Precision (AP) chosen as the primary evaluation metric, which averages AP across IoU 

thresholds from 0.5 to 0.95 with an interval of 0.05. The data illustrates on graphs 

represents the highest and lowest precision value for each version of each model (figure 

1). 

 

Fig. 1. Accuracy comparison on COCO test-dev 
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2.6 Dataset preparation 

The preparation and configuration of the dataset among the most important phases 

in the process of object detection. The dataset plays a significant role in scientific 

research. They have been one of the most important factors for them for progress in 

deep learning [17]. Unfortunately, data is still difficult and more expensive to generate 

and annotate. A set of operations, as summarized in the figure 2 below, are necessary 

in preparing the dataset, and we will detail them in this section.  

 

Fig. 2. Dataset preparation 

An experiment was done in this regard in the region of BeniMellal-Khenifra in 

Morocco, known for its temperate climate. It is a question of collecting real images of 

two types of weeds. The first is the "Phalaris Paradoxa" the second is "Convolvulus" 

(figure 3, 4), belong to two different classes. For this experiment, a professional Nikon 

7000 camera is used to capture 2000 images of wheat fields under several lighting 

conditions (sunny and cloudy weather from morning to evening). 

 

Fig. 3. Convolvulus weed 
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Fig. 4. Phalaris weed 

These RGB images show the two types of plants at different stages of growth; they 

are in png format and of various sizes, which requires us to resize them before being 

used as input to the CNN model in the form 416x416. Then the annotation phase comes 

to assign a legend to the objects containing in the image. This technique creates training 

data for computer vision to train our model to learn how to see an item as we do [18]. 

To do this, we used Use LabelImg Annotations (figure 5), which is based on the 

bounding box to force the labels to draw a box as close as possible to the edges of the 

key objects in the image (weeds), the points forming the frames (at the top left and in 

the bottom right) are stored in an XML file. Then we divided the images into train, 

validation and test splits to avoid the model being overfitted and to evaluate the model 

with metrics generated for this purpose. The extended part of our dataset (70%) is the 

training set reserved for training our models. Accuracy resulted in these images after 

the training step will be taken to memorize the right output. Validation's second set is a 

separate section of the dataset (20%) used during training to evaluate our model's 

performance reporting the validation metrics continually after each training epoch, such 

as average precision. Finally, 10% of our dataset was used as a test set after the training 

experiments to get an idea of the model's final performance [19]. 
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Fig. 5. Label object bounding boxes in images 

Besides resizing input images, there are other preprocessing options to ensure that 

the dataset images are correctly formatted for our model to detect edges efficiently. This 

processing applies to all images (train, valid, and test) to reduce learning time and 

improve inference speed [20]. In our case, we used a set of options, and here some 

examples: 

• Static Crop: Crop each image to the specified section, such as the bottom third. 

• Auto-Adjust Contrast: Boosts contrast based on the image's histogram to 

improve normalization and line detection in varying lighting conditions. 

• Auto-Orient: Discard EXIF rotations and standardize pixel ordering. 

Data Augmentation is the last process in preparing the dataset. Its options are applied 

to images in our training set random to produce more training data and increase our 

model accuracy. This way applies domain-specific techniques to examples to generate 

more training data [21]. These methods give us about 3000 images in total after 

augmentation. Below examples of some methods used in the experiment: 

• Flips: Haphazardly reflecting a picture about its x or y pivot drives our model 

to perceive that an image need not generally be perused from left to right or up 

to down. This method helps the model to be obtuse toward image orientation 

(figure 6, 7). 
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Fig. 6. Image preprocessed 

 

Fig. 7. Horizontal flip of image 

• Rotations :Turning a picture is especially significant when a model might 

be utilized in a non-fixed position, similar to our intelligent system that will 

be proposed. These techniques assist the model with being resilient to 

camera roll and distinguishing objects well even when the camera or subject 

is not entirely adjusted(figure 8).  
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Fig. 8. New image resulted after 34° of rotation 

• Exposure: It's critical to consider the most extreme and least of brightness in 

the fields, so this method Adds inconstancy to picture brightness and adjusting 

the picture to be arbitrarily brighter and darker to assist our model with being 

versatile to lighting and camera setting changes (figure 9, 10). 

 

Fig. 9. New image generated with 50%  
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Fig. 10. New image generated with -50% of brightness 

• Noise: This technique adds noise to assist your model with being tough to 

camera artifacts. A typical method is "salt and pepper noise," wherein picture 

pixels are haphazardly changed over to be totally dark or white (figure 11). 

 

Fig. 11. New noisy images generated 

3 Results and Discussion 

During our experiments, we implemented the four models to train them to our 

dataset. The configuration of these models differs from one to the other. Each object 

detection model has a shell of a preparation setup explicit to each one, given by the 

creators (base pipeline file). And a pretrained checkpoint indicates the file of pretrained 
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weights saved from when the model was trained on an enormous dataset. We also 

specify some training parameters like input image size number of training epochs and 

steps. There is several metrics to evaluate the performance of the neural networks and 

deep learning models after training them on our dataset, we use the precision metrics 

and also calculating the error. The precision gauges the model's precision in arranging 

a images as positive. The precision is determined as the proportion between the quantity 

of Positive images correctly arranged (True positive) to the complete number of picture 

named Positive (either correctly or incorrectly) (true positive + false positive) (1) [22]. 

We also evaluate models accuracy by running inference on the test dataset to show 

predictions on them [23]. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

TP: True positive 

FP: False positive 

 

To display the results obtained for the four models, we illustrate in what follows, the 

results in terms of precision and error for each of the four models. 

3.1 Results obtained for the EfficientDet model 

After training the model for 3500 steps, we get results like the accompanying in 

TensorBoard: 

 

Fig. 12. Precision of the EfficientDet model 
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Fig. 13. Error of the EfficiendDet model 

The results obtained, the following remarks are noted: According to Figure 12, the 

accuracy of the training increases with each stage to reach 52% after 12 hours of 

training. This reflects that with each progression, the model learns more data. So we 

need more steps to get more accuracy. The training error decreases with the number of 

epochs, reaching 38% (figure 13). Despite the medium precision of EfficientDet 

training, we had some interesting predictions on the test images (figure 14). This shows 

that we only need to speed up the performance by modifying specific parameters, such 

as, the number of training steps, the data-augmentation options on the dataset. 

 

Fig. 14. Weed prediction on test image 
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3.2 Results obtained for the YOLOv5 model 

After the end of the YOLOv5 training on 200 epochs, we evaluate its performance 

by the precision and error metrics on Tensorboard as follow: 

 

Fig. 15. The precision of the YOLOv5 model 

 

Fig. 16. Error of the YOLOv5 model 

From the results below, we can see that the performance metrics are saved to 

Tensorboard, and showed an interesting precision reached 82% (figure 15). A total error 

has decreased to 30% (figure 16). The YOLOv5 training is faster than the other models, 

approximately 2 hours of training. It means that the performance of the model is always 
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able to improve with each epoch. The predictions on the test images gave the same fact 

(figure 17), most of the predictions are correct with a rate of 98%, here is a model of 

these predictions: 

 

Fig. 17. YOLOv5 prediction on test image 

3.3 Results obtained for the Detectron2 model 

We display results on Tensorboard to see how the training procedure has performed 

on 1500 steps. There are a lot of metrics of interest in this evaluation tool. We focus on 

the total of loss and accuracy; as shown in the figures below: 

 

Fig. 18. Detectron2 Accuracy 
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Fig. 19. Detectron2 Error 

After analyzing the results acquired, the accompanying comments can be seen: 

According to the figure 18, the training accuracy increments with the number of steps. 

This reflects that with each step, the model learns more information. We ought to 

change up steps if Val accuracy is as yet rising, change down if overfit. The training 

has arrived at 97% on the last steps, after 5 hours of training that is interesting. We also 

notice that all of the misclassified images have an error rate of 42.12% (figure 19). 

Finally, we can run our new custom Detectron2 detector on real images that the model 

has never seen. We get an interesting forecast demonstrating that the model has learned 

how to identify weeds from the crop (figure 20). 

 

Fig. 20. Detectron2 inference on test images 
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3.4 Results obtained for the Faster R-CNN model 

The results displayed on the Tensorboard tool after 10000 steps show the following 

metrics: 

 

Fig. 21. The accuracy of Faster R-CNN  

 

Fig. 22. The accuracy of Faster R-CNN  

The figures above show that learning accuracy increases with each step to reach 45% 

after 10 hours (figure 21). This reflects the number of epochs is an essential factor where 

the model learns more information. Although the number of steps is high compared to 
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other models, the accuracy is average. Likewise, the error changes with the progress of 

learning. It increases and decreases. In the last stages, it only reaches 80% (figure 22). 

Despite all that, the predictions given on the test images show different results on test 

images as it shows in the figure below (figure 23), it shows that it is necessary to 

improve the model by dragging it on more steps and generate more picture with the 

data augmentation tool. 

 

Fig. 23. Inference on test images 

After analyzing the results obtained on all open-source object detection models, we 

compare the results of the different detectors in terms of both accuracy and error. For 

this purpose, the results achieved by these detectors on our custom data available in 

table 1. 

Table 1.  The performance of studied models 

Model Type 

Average 

precision on 

COCO dev-

set 

Number of 

training stages 

Precision 

on our 

dataset 

Error On 

our 

dataset 

Training 

time 

EfficientDet  

 
One stage detector 55.1 3500 steps 52% 38% 12hours 

YOLOv5 One stage detector 50.1 200 epochs 82% 30% 2hours 

Detectron2 One stage detector 64.31 1500 steps 97% 42% 5 hours 

Faster R-CNN Two stage detector 36.8 10 000 steps 45% 80% 10 hours 

 

The table shows the type of open-source model of our experiment as well as the 

number of epochs. The results obtained on the COCO datasets, as well as those results 

obtained on our dataset, which is expressed in terms of learning precision, and error, 

and finally of execution time. The results obtained improved as we increased the epoch 

number because the more we have more steps, the more we get more precision and little 
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error. The dataset is also a determining element in object detection models. It is 

necessary to have a large dataset to achieve better results for most models. Also, 

obtaining good results requires using a GPU instead of a CPU [24]. Also, we are likely 

to get more performance when dropout is used. 

The YOLOv5 model presented the best results found compared to the other models 

in terms of precision and error. The execution time was very reasonable compared to 

the number of epochs and the size of our database. However, YOLOv5 has medium 

results on the COCO dataset [25], but it proves that it is an efficient model on a medium 

dataset in a reduced time. So, we save these weights to use them in a robotic weed 

detection system based on Raspberry pi3. This will contribute to detecting weeds in 

real-time to achieve localized spraying of the weeds instead of propagating them on a 

large scale, which will be beneficial in terms of the quantity of herbicide exploited, thus 

protects the environment and saves time, this will be an automated decision-making 

without any human involvement [26]. 

4 Conclusion 

We have presented in this paper a comparison approach based on the detection 

models of open-source objects, for this, we have used four recent models with different 

architectures and we have shown the different results obtained in terms of precision and 

error on our prepared dataset. The comparison of the results found showed that the 

number of epochs, the size of the dataset, Optimizing the GPU/ CPU assignment, data-

augmentation are important factors for obtaining better results. The results obtained 

proved to us that YOLO v5 is a fast, lightweight model that we consider a better choice 

to be used in an on-board Raspberry based weed detection system that will be the 

subject of a future article. 
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