
SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

Benefits and Pitfalls of Using HTML5 APIs for 
Online Experiments and Simulations 

1http://dx.doi.org/10.3991/ijoe.v8iS3.2254 

P. Garaizar, M.A. Vadillo and D. López-de-Ipiña 
University of Deusto, Bilbao, Spain. 

 
 

Abstract—The most recent advances in the architecture of 
the Web allow using it as an excellent platform to deliver 
experiments and simulations over the Internet. However, 
there are still some challenges related to the animations’ 
accuracy, to user input collection or to real-time 
communications that have to be accomplished to properly 
port native application- based experiments and simulations 
to the Web. The limitations of the standards preceding 
HTML5 have forced web developers to embed non-HTML 
objects using a wide range of non-standard plugins and 
causing an extremely fragmented execution environment 
where features must be implemented several times in 
different programming languages to guarantee full 
compliance with every user-agent. As HTML5 provides a 
standard -yet fully-featured- environment to develop and 
execute applications, web user-agents are now more similar 
to application players than to simple Internet browsers. In 
this paper we analyze the benefits and pitfalls of these new 
Application Programming Interfaces (APIs), providing 
examples of both good and bad instances of research-related 
use. 

Index Terms—Application programming interface, Best 
practices, Internet, Standards. 

I. INTRODUCTION 
During the last two decades, the Web has evolved from 

the transfer of read-only and static hypertextual data to the 
"Read/Write Web", achieving one of the goals initially 
proposed by its designers [1]. Real-time responsive 
interfaces are nowadays the standard way of interaction in 
the Web. Current users do not only browse (i.e., inspect 
something leisurely and casually), but also play 
applications on the Web (e.g., Gmail for e-mail, Google 
Docs for word processing, Youtube for multimedia 
content sharing). This shift from native to web-based 
applications has also changed education. On the one hand, 
webinars and Massive Open Online Courses (MOOCs) [2] 
are becoming more and more popular as an easy way to 
deliver learning materials (i.e., declarative knowledge). 
On the other hand, web-based remote laboratories provide 
platforms to practice (i.e., procedural knowledge). 

From a technical point of view, the limitations of the 
first versions of the HTML standard [4] have forced web 
developers to combine a wide range of non-standard 
technologies (e.g., Java, Flash, Silverlight) to achieve their 
goals. This fragmented execution environment for web 
applications caused multiple implementations of the same 
feature to avoid incompatibilities. A fully-featured and 
standard execution environment was needed. HTML5 and 
related standards (e.g., WebGL. SVG, CSS3) [5] try to 
solve this issue providing native-like user experiences 
within the web browser. In this paper we analyze the 

benefits and pitfalls of using them regarding online 
experimentation and simulations. 

II. ANIMATIONS 
There are several technologies and APIs related to the 

HTML5 standard that can be used to generate animations. 
Some of them are part of the HTML5 specification (e.g., 
Canvas 2D API [5]), and some others are defined in 
different specifications (e.g., WebGL [6]). Although this 
distinction is clear, many web browser vendors (i.e., 
Microsoft, Apple, Google, Mozilla, Opera) usually refer to 
all of them as HTML5-related technologies, and so we do 
in the rest of this paper.  

Creating animations in HTML5 is not just adding 
multimedia content to a HTML document via <video> 
elements. It also involves other features like Document 
Object Model (DOM) [7] manipulation over time, event 
handling, human interaction, synchronization, or real-time 
data processing. Coding in ECMAScript [8] is needed to 
run the animation in most of the cases, but some 
animations can be purely declarative. Both procedural and 
declarative animations have their pros and cons. 
Declarative animations are usually easier to create. 
Developers define what they want (e.g. change the width 
of a box from 100 pixels to 800 in 5 seconds), but not how 
the browser should achieve it. Procedural animations are 
more flexible and less limited to the functionality provided 
by the specifications [9, 10, 11, 12]. However, developers 
have to describe how to implement all the changes given 
in the animation programmatically (e.g. create a loop to 
increase the width of a box progressively, adding a 
constant value to the current width of that box each time). 
As web-based procedural animations usually depend on 
ECMAScript timers, they could interfere with other 
interactions using the event queue. Generally, declarative 
animations are preferred over procedural ones due to their 
simplicity and the browser optimizations that can be done 
to run them faster (e.g., GPU acceleration).   

A. Declarative Animations 
Currently there are two standards to define declarative 

animations in a user-agent (i.e., browser) execution 
environment: Scalar Vector Graphics (SVG) Animation 
[12] and Cascading Style Sheets (CSS) Animations [9, 10, 
11].  

SVG Animation is closely related to Synchronized 
Multimedia Integration Language (SMIL) Animation [13]. 
SVG is a host language in terms of SMIL Animation. This 
means that SVG supports animation elements defined in 
the SMIL Animation specification (i.e., animate, set, 
animateMotion, animateColor), but also includes 
compatible extensions to it (i.e., animateTransform, path, 
mpath, keyPoints, rotate). Figure 1 shows an example of a 

20 http://www.i-joe.org

http://dx.doi.org/10.1109/REV.2012.6293168�


SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

declarative animation of a 200 x 200 px black rectangle 
being expanded to 800 px of width in 5 seconds, 
beginning at 00:00:01s and ending at 00:00:06s. 
 

 
There are many benefits of using SVG Animation: a) 

Accurate and easy to define and synchronize animation; b) 
No need to use ECMAScript timers; c) No overload of the 
ECMAScript event queue; d) Standalone SVG files that 
can be played outside HTML documents. The biggest 
pitfall is that browser's compliance with these 
specifications may be incomplete [14]. 

CSS Animations are defined using several 
specifications. CSS Transforms API [9] allows 
transforming CSS-styled elements in a two-dimensional or 
three-dimensional space using transformation functions 
(e.g., scaleX, skewY, rotate3d) and related properties 
(e.g., perspective, transform-origin, transform-style). CSS 
Transitions API [10] is used to change CSS properties 
from one value to another smoothly over a given period of 
time (i.e., using a transition timing function like "ease", 
"linear", "ease-in", "ease-out", "ease-in-out", or "cubic-
bezier"). Finally, CSS Animations API [11] allows 
declaring a set of keyframes with different transitions (i.e., 
property, duration, timing function, iteration count, etc.) 
between them. Figure 2 shows an example of a declarative 
animation using CSS Animations. 
 

 
The benefits and pitfalls of using CSS Animations are 

almost the same as those of SVG Animation, except for 
the ability of SVG files to be played outside HTML 
documents. However, CSS Animations are more likely to 
be used by web developers because more HTML elements 
can be animated using them. Therefore, it is recommended 
to use CSS Animations rather than SVG Animation as 
they are more likely to be implemented, upgraded and 
optimized by browser vendors. 

B. Procedural Animations 
There are two main reasons for using procedural 

animations rather than declarative animations: a) The lack 
of support of the browser, and b) The complexity of the 
animation precluding its definition in a declarative 
manner. In any of those cases, ECMAScript timers must 
be used to change properties over time (see Figure 3). 
However, timer delay is not guaranteed using 
ECMAScript timers. In order to achieve the highest frame 
rate in their animations, some developers use a 0 ms delay 
timer to redraw them as fast as possible. However, delays 
smaller than the limit defined by the specification [15] are 
forced to the use at least the minimum delay (i.e., 4 ms for 
browsers released in 2010 and onward, 10 ms for previous 
versions). Moreover, considering that all ECMAScript in a 
browser window executes on a single thread, 
asynchronous events (e.g., mouse clicks or timers) are 
only dispatched when the event queue is free [16]. For this 
reason, Web workers [17] can be used when running 
scripts independently in the background is needed (e.g., to 
calculate the next coordinates of a complex animation in a 
physics engine), leaving the window event queue free. 
Using the cross-document messaging API (i.e., 
postMessage) designed with Web workers in mind, there 
are cross-browser implementations of zero-delay timers 
[18]. The ECMAScript closure shown in Figure 5 enables 
an immediate call to the event handler of the timer, in a 
similar way to the setImmediate method proposed by 
Microsoft in the Efficient Script Yielding API [19]. 
Nevertheless, Web workers have some drawbacks. They 
are not able to change DOM elements or properties, and 
they are relatively expensive to create and should not be 
used in large numbers. 
 

 
Considering all these issues, a new API was created to 

write procedural animations where the browser controls 
the update rate of the animation [20]. Using the Timing 
control for script-based animations API developers 
request the browser schedule an animation frame update, 
instead of trying to figure out when is the best moment to 
do it. As long as the browser keeps control of all the 
running animations using this API, it is in a better position 
to determine the frame rate such that all of the animations 
will run as smoothly as possible (see Figure 4). There is 
also another advantage of using this API regarding power 
consumption, as it will set up a very low frame rate for 
animations currently invisible. Using this API for 
procedural animations is highly recommended, but it is 
still not widely implemented [21]. 

// 60 Frames Per Second 
var interval = 1000 / 60; 
 
function start() { 
  //Define initial status 
  setTimeout(animate, interval); 
} 
 
function animate() { 
  //Change properties 
  setTimeout(animate, interval); 
} 

Figure 3. Procedural animation stub using ECMAScript timers. 

@keyframes change { 
  0% { 
    width: 200px; 
  } 
  50% { 
    width: 800px; 
  } 
} 
div#box { 
  animation-name: change; 
  animation-duration: 5s; 
  animation-iteration-count: infinite; 
  animation-timing-function: linear; 
} 

Figure 2. Declarative animation defined using CSS Animations. 

<?xml version="1.0" encoding="UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg"> 
<rect id="box" x="100" y="100"  
 width="200" height="200" fill="black"> 
<animate attributeName="width" begin="1s" 
 dur="5s" from="200" to="800" /> 
</rect> 
</svg> 

Figure 1. Declarative animation defined in SVG Animation (SMIL). 

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 21



SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

Regarding the content, not only CSS properties and 
SVG files can be animated using scripts, but also new 
HTML5 related APIs such as Canvas 2D Context [22] and 
WebGL 2D/3D Context [6]. ECMAScript code can be 
seamlessly embedded into SVG files to change SVG 
properties, create new shapes or animate them over time. 
HTML Canvas 2D Context API works in a different way. 
It provides a blank canvas (i.e., a blank bitmap) to draw 
shapes, text or images, apply transformations (i.e., scale, 
rotate, translate, transform), and change compositing or 
shadow attributes. Similarly, WebGL enables a 2D/3D 
context for the canvas element. It is derived from OpenGL 
ES 2.0 [23] and provides an immediate mode 3D 
rendering API where OpenGL-like resources (i.e., 
textures, buffers, framebuffers, renderbuffers, shaders and 
programs) are represented as DOM objects. Most of the 
times, choosing the proper API for a specific scenario is 
not trivial. Table 1 shows their advantages and 
disadvantages and both good and bad instances of their 
use in terms of complexity (i.e., nearly every animation 
can be generated using any of these APIs, but some are 
easier to program when using one of them and not the 
others). 
 

 

III. USER INPUT COLLECTION 
Online experiments and simulations often need to 

collect user input in real-time. As stated on its 
specification, in ECMAScript time is measured in 
milliseconds since 01 January, 1970 UTC (i.e., UNIX 
epoch) [8]. The same happens with DOM events' 
timeStamp property, used to specify the time at which the 
event was created [24]. However, these timestamps are 
gathered from the system clock and therefore may not 
have millisecond accuracy in some Operating Systems 
[25, 26]. Considering this limitation, some developers 
have included a Java Applet to expose Java’s nanosecond 
timing function to ECMAScript [27, 28] (see Figure 6). 

Fortunately, the Java's nanoTime trick is not necessary 
when High Resolution Time (HRT) API [29] is available. 
This API provides a monotonically increasing timing 
function with sub-millisecond resolution not subject to 
system clock skew or adjustments (see Figure 7). 

 
 

 

import java.applet.Applet; 
public class nano extends Applet { 
  public long nanoTime() { 
    return System.nanoTime(); 
  } 
} 

Figure 6. Java Applet to expose nanosecond timing function to 
ECMAScript (excerpt from BenchmarkJS’s  nano.java). 

// 60 Frames Per Second 
var interval = 1000 / 60, 
    last; 
 
(function() { 
  var timeouts = []; 
  var messageName = "zero-timeout-message"; 
 
  function setZeroTimeout(fn) { 
    timeouts.push(fn); 
    window.postMessage(messageName, "*"); 
  } 
 
  function handleMessage(event) { 
    if (event.source == window &&  
      event.data == messageName) { 
      event.stopPropagation(); 
      if (timeouts.length > 0) { 
        var fn = timeouts.shift(); 
        fn(); 
      } 
    } 
  } 
 
  window.addEventListener("message",  
    handleMessage, true); 
 
  window.setZeroTimeout = setZeroTimeout; 
})(); 
 
function start() { 
  //Define initial status 
  last = Date.now(); 
  setZeroTimeout(animate); 
} 
 
function animate() { 
  time = Date.now(); 
  if (time >= last + interval) { 
    //Change properties 
    last = time; 
  } 
  setZeroTimeout(animate); 
} 

Figure 5. Procedural animation stub using postMessage based 
setZeroTimeout [16]. 

// 60 Frames Per Second 
var interval = 1000 / 60, 
    last; 
 
function start() { 
  //Define initial status 
  last = Date.now(); 
  requestAnimationFrame(animate); 
} 
 
function animate(time) { 
  if (time >= last + interval) { 
    //Change properties 
    last = time; 
  } 
  requestAnimationFrame((animate); 
} 

Figure 4. Procedural animation stub using Timing control for 
script-based animations API. 

22 http://www.i-joe.org



SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

 
On the whole, dealing with ECMAScript timing 

functions to collect user input accurately depends on the 
API support of the user agent. Undoubtedly, HRT API is 
the best option when available. Relying on Java's 
nanosecond timing function may be an option when Java 
support is available. Unfortunately, that setup is 
uncommon nowadays. Finally, ECMAScript timing 
functions perform differently depending on the underlying 

platform [30]. This should not be overlooked by 
researchers.  
 

 
 

IV. REAL-TIME COMMUNICATIONS 
Delivering a simulation or experiment over the Internet 

usually involves real-time communications. During the 
last decade, Asynchronous JavaScript And XML (AJAX) 
[31] based interfaces have become the norm. AJAX 
enables clients to asynchronously poll for server-side 
events, but polling is not strictly a real-time 
communication as it is bounded to the polling interval.  

Comet tried to solve this issue, defining mechanisms to 
allow the server to send information to the user agent 
without prompting from a client (i.e., push instead of 
pull). However, Comet implementations are not standard 
and often they are not interoperable either [32]. 
Consequently, long polling connections (i.e., asking for a 
new AJAX connection with an extremely long timeout 
when the last update is received from the server) are often 
used as a workaround for the lack of server pushing 
support, but it is a far from satisfactory solution.  

The HTML5 WebSocket specification [33] allows 
pushing and pulling information through a single-socket 
full-duplex connection between the browser and the 
server. It can provide a 500:1 reduction in unnecessary 
HTTP header traffic and 3:1 reduction in latency [34]. 
Unfortunately, the WebSockets API is still under 
development, some security problems have been 
discovered [35], and there may be compatibility issues 
across different implementations. Figure 8 shows how 
these mechanisms can be used to establish a connection 
that enables server-side notifications.  

Finally, another web standard for real-time 
communications is currently being developed: WebRTC 
[36]. WebRTC provides real-time communications 
between browsers (e.g., audio / video conferencing) 
without requiring proprietary plugins, downloads or 
installs. WebRTC current implementation relies on two 
APIs, PeerConnection API [36] and GetUserMedia API 
[37]. PeerConnection API is able to cover most of the use 
cases involved in peer-to-peer connections natively from 
the user-agent (i.e., Network Address Translation using 
ICE [38] and STUN [39] or TURN [40] servers, and 
session management using SDP [41]). GetUserMedia API 
is used to get access from JavaScript to local devices that 
can generate multimedia stream data (e.g., webcams or 
microphones). Although there is still a long roadmap 
ahead implementing WebRTC, working proofs of concept 
have been released for Google Chrome and Mozilla 
Firefox browsers. GetUserMedia API is already released 
for Opera, and announced for Internet Explorer 11 [42]. 

partial interface Performance { 
  DOMHighResTimeStamp now(); 
}; 

Figure 7. The DOMHighResTimeStamp type and the now 
method of the Performance interface in High Resolution Time API.

TABLE I.  
COMPARISON OF PROCEDURAL ANIMATION APIS 

SVG 

Advantages Disadvantag
es Good Scenarios Bad Scenarios 

Standalone 
Slow with a 
big number 
of shapes 

Conceptual 
animations 
with a small 
number of 

objects 

Very detailed 
objects with 

complex 
animations 

Vectorial 

Scalable 
animations 

with controls to 
zoom-in and 

zoom-out 

Easy to 
redraw / 

move shapes 

Accessible 
applications, 
providing an 
alternative 

description of 
the animation if 

needed 

 

Cannot be 
exported to 
an image 

Data charts and 
plots 

Highly 
responsive 

and fast 
games or 

simulations 

 
HTML CANVAS 2D CONTEXT 

Advantages Disadvantag
es Good Scenarios Bad Scenarios 

Fast Redraws 

Realistic 
animations 
with a big 
number of 

objects 
involved 

Drag & Drop 
authoring 
tools with 

events 
attached to 

objects 
Similar 

performance 
with a big 
number of 
concurrent 
elements 

Poor text-
rendering 
support. 

Interactive 
graphs and 

real-time image 
processing (e.g. 

fractals) 
Can be 

exported to 
an image 

(toDataURL) 

Resolution 
dependent Videogames 

Animations 
where text 

readability is 
important 

 
WEBGL 

Advantages Disadvantag
es Good Scenarios Bad Scenarios 

3D 

Lack of 
support 

(browser / 
graphics 

card) 

Real-time 
rendered 3D 

visualizations 

Accessible 
applications 
working out-
of-the-box in 
any device 

Extremely 
fast (3D 

acceleration 
/ Web 

Workers) 

Sophisticated 
animations 2D 

simulations 
with zooming, 

shading or 
lighting effects 

Easy to port 
to / from 
OpenGL 

Problems 
exporting to 
an image. 

Immersive 
videogames 

Low-power 
consuming 
applications 
(e.g., mobile 
applications) 

 

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 23



SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

 

 

 

V. CONCLUSIONS 
Twenty years on from the invention of the Web, its use 

as a platform for delivering experiments and educational 
simulations has increased dramatically and a 
comprehensive range of standard and patent-free 
specifications are now widely available for researchers 
and content providers. Nevertheless, there are still some 
unsolved issues. Many of these specifications are still 
under heavy development and it is not easy to find living 
instances of research-related use. The purpose of the 
present paper was to provide a roadmap to this new land 
of opportunity for HTML5 based e-research, focusing on 
three main aspects: a) Animations, b) User input, and c) 
Real-time communications. For each of them, several 
recommendations of API usage have been provided 
related to the special needs of online experimentation. To 
conclude, benefits of using HTML5 APIs for online 
experiments and simulations clearly exceed the costs, 
although related pitfalls and caveats should not be 
overlooked by researchers. 

REFERENCES 
[1] T. Berners-Lee, and R. Cailliau, “WorldWide-Web: Proposal for a 

hypertexts project”. Retrieved from http://www.w3.org/ 
Proposal.html 

[2] A. McAuley, B. Stewart, G. Siemens and D. Cormie.”The MOOC 
Model for Digital Practice.” Retrieved from http://davecormier. 
com/edblog/wp-content/uploads/MOOC_Final.pdf 

[3] J. Garcia-Zubia, P. Orduña, D. Lopez-de-Ipiña, and G.R. Alves, 
“Addressing software impact in the design of remote 
laboratories”. IEEE Transactions on Industrial Electronics, 56, 
pp: 4757-4767, 2009. http://dx.doi.org/10.1109/TIE.2009.2026368 

[4] D. Ragget, “HTML 3.2 Reference Specification, W3C 
Recommendation”, 14-Jan-1997, Retrieved from 
http://www.w3.org/TR/REC-html32 

 
Figure 8b. Server-side notifications mechanisms, AJAX long 

polling. 

 
Figure 8c. Server-side notifications mechanisms, HTML5 

Websockets. 

 
Figure 8a. Server-side notifications mechanisms, AJAX polling. 

24 http://www.i-joe.org

http://www.w3.org/�Proposal.html�
http://www.w3.org/�Proposal.html�
http://davecormier.�com/edblog/wp-content/uploads/MOOC_Final.pdf�
http://davecormier.�com/edblog/wp-content/uploads/MOOC_Final.pdf�
http://dx.doi.org/10.1109/TIE.2009.2026368�
http://www.w3.org/TR/REC-html32�


SPECIAL FOCUS PAPER 
BENEFITS AND PITFALLS OF USING HTML5 APIS FOR ONLINE EXPERIMENTS AND SIMULATIONS 

 

[5] I. Hickson, "HTML5. A vocabulary and associated APIs for 
HTML and XHTML". W3C Working Draft 20 April 2012. 
Retrieved from http://www.w3.org/TR/2012/WD-html5-
20120320/ 

[6] C. Marrin,”WebGL Specification, Version 1.0”, 10 February 2011. 
Retrieved from https://www.khronos.org/registry/webgl/specs/1.0/ 

[7] P. Le Hégaret, R. Whitmer, and L. Wood, “Document Object 
Model (DOM)”, 2009/01/06. Retrieved from 
http://www.w3.org/DOM/ 

[8] Ecma International, “Standard ECMA-262. ECMAScript 
Language Specification. Edition 5.1 (June 2011)”. Retrieved from 
http://www.ecma-international.org/publications/files/ECMA-
ST/Ecma-262.pdf 

[9] S. Fraser, D. Jackson, D. Hyatt, C. Marrin, E. O'Connor, D. 
Schulze, and A. Gregor, “CSS Transforms”, W3C Working Draft 
28 February 2012, Retrieved from 
http://www.w3.org/TR/2012/WD-css3-transforms-20120228/ 

[10] D. Jackson, D. Hyatt, C. Marrin, and L.D. Baron, “CSS 
Transitions Module Level 3”, W3C Working Draft 01 December 
2009. Retrieved from http://www.w3.org/TR/2009/WD-css3-
transitions-20091201 

[11] D. Jackson, D. Hyatt, and C. Marrin, “CSS Animations Module 
Level 3”, W3C Working Draft 20 March 2009. Retrieved from 
http://www.w3.org/TR/2009/WD-css3-animations-20090320  

[12] E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. 
Schepers, and J. Watt, “Scalable Vector Graphics (SVG) 1.1 
(Second Edition)”, W3C Recommendation 16 August 2011. 
Retrieved from http://www.w3.org/TR/2011/REC-SVG11-
20110816/ 

[13] P. Schmitz and A. Cohen, “SMIL Animation”, W3C 
Recommendation 04-September-2001. Retrieved from 
http://www.w3.org/TR/2001/REC-smil-animation-20010904/ 

[14] A. Deveria, “When can I use... SVG SMIL animation”, Retrieved 
from http://caniuse.com/#feat=svg-smil 

[15] I. Hickson, “WHATWG HTML Living Standard, Last Updated 13 
March 2012, 7.3 Timers”. Retrieved from http://www.whatwg 
.org/specs/web-apps/current-work/multipage/timers.html#timers 

[16] J. Resig, “How JavaScript Timers Work”. Retrieved from 
http://ejohn.org/blog/how-javascript-timers-work/ 

[17] I. Hickson, “WHATWG HTML Living Standard, Last Updated 13 
March 2012, 9 Web Workers”. Retrieved from 
http://www.whatwg.org/specs/web-apps/current-
work/multipage/workers.html 

[18] D. Baron, “setTimeout with a shorter delay”, 2010-03-09, 
Retrieved fron http://dbaron.org/log/20100309-faster-timeouts 

[19] J. Mann and J. Weber, “Efficient Script Yielding”, Editor's Draft 
July 28th, 2011. Retrieved from http://dvcs.w3.org/ 
hg/webperf/raw-file/tip/specs/setImmediate/Overview.html 

[20] J. Robinson and C. McCormack, “Timing control for script-based 
animations”, W3C Working Draft 21 February 2012. Retrieved 
from http://www.w3.org/TR/2012/WD-animation-timing-
20120221/ 

[21] A. Deveria, “When can I use... requestAnimationFrame”. 
Retrieved from  http://caniuse.com/#feat=requestanimationframe 

[22] I. Hickson, “HTML Canvas 2D Context”, W3C Working Draft 20 
March 2012. Retrieved from http://www.w3.org/TR/2012/WD-
2dcontext-20120320/ 

[23] A. Munshi and J. Leech,”OpenGL® ES Common Profile 
Specification Version 2.0.25”, November 2010. Retrieved from 
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.2
5.pdf 

[24] T. Pixley, “Document Object Model Events”. Retrieved from 
http://www.w3.org/TR/DOM-Level-2-Events/events.html 

[25] M. Russinovich, “ClockRes v2.0”, Microsoft Technet, 2009. 
Retrieved from http://technet.microsoft.com/en-us/sysinternals/ 
bb897568.aspx 

[26] N. Stewart, “Millisecond accuracy video display using OpenGL 
under Linux”, Behavior Research Methods, Volume 38, Number 1, 
142-145, 2006. http://dx.doi.org/10.3758/BF03192759 

[27] jsPerf. Retrieved from http://jsPerf.com 
[28] Benchmark.js. Retrieved from http://benchmarkjs.com 
[29] J. Mann, “High Resolution Time”, W3C Working Draft 13 March 

2012. Retrieved from http://www.w3.org/TR/2012/WD-hr-time-
20120313/ 

[30] J. Resig, “Accuracy of JavaScript Time”. Retrieved from 
http://ejohn.org/blog/accuracy-of-javascript-time/ 

[31] J. J. Garrett, “Ajax: A New Approach to Web Applications”. 
Retrieved from http://www.adaptivepath.com/ideas/ajax-new-
approach-web-applications 

[32] Comet Daily, “Comet Maturity Guide”, Version: 0.5 (Dec 12, 
2009). Retrieved from http://cometdaily.com/maturity.html 

[33] I. Hickson, “The WebSocket API”, Editor's Draft 13 March 2012. 
Retrieved from http://www.w3.org/TR/websockets/ 

[34] P. Lubbers and F. Greco, “HTML5 Web Sockets: A Quantum Leap 
in Scalability for the Web”. Retrieved from 
http://websocket.org/quantum.html 

[35] L. Huang, E. Y. Chen, A. Barth, E. Rescorla, and C. Jackson, 
“Talking to Yourself for Fun and Profit”, in Proceedings of 
W2SP, 2011.  

[36] A. Bergkvist, D.C. Burnett, C. Jennings, and A. Narayanan, 
“WebRTC 1.0: Real-time Communication Between Browsers”, 
W3C Editor's Draft 16 March 2012. Retrieved from 
http://dev.w3.org/2011/webrtc/editor/webrtc.html 

[37] D. Burnett, and A. Narayanan. getusermedia: Getting access to 
local devices that can generate multimedia streams 22 December 
2011. W3C Editors draft (Work in progress.) Retrieved from 
http://dev.w3.org/2011/webrtc/editor/getusermedia.html 

[38] J. Rosenberg. Interactive Connectivity Establishment (ICE): A 
Protocol for Network Address Translator (NAT) Traversal for 
Offer/Answer Protocols. April 2010. Internet RFC 5245. 
Retrieved from http://tools.ietf.org/html/rfc5245 

[39] J. Rosenberg, R. Mahy, P. Matthews, D. Wing. Session Traversal 
Utilities for NAT (STUN). October 2008. Internet RFC 5389. 
Retrieved from http://tools.ietf.org/html/rfc5389 

[40] P. Mahy, P. Matthews, J. Rosenberg. Traversal Using Relays 
around NAT (TURN): Relay Extensions to Session Traversal 
Utilities for NAT (STUN). April 2010. Internet RFC 5766. 
Retrieved from http://tools.ietf.org/html/rfc5766 

[41] J. Rosenberg, H. Schulzrinne. An Offer/Answer Model with the 
Session Description Protocol (SDP). June 2002. Internet RFC 
3264. Retrieved from http://tools.ietf.org/html/rfc3264 

[42] H.Alvestrand, and S. Håkansson. Status of W3C WEBRTC. 
March 2012. IETF 83 Paris - RTCWEB meeting. Retrieved from 
http://www.ietf.org/proceedings/83/slides/slides-83-rtcweb-7.pdf 

AUTHORS 
P. Garaizar is with Deusto Institute of Technology 

(DeustoTech), University of Deusto, Avda. Universidades 
24, 48007, Bilbao, Spain (e-mail: garaizar@deusto.es).  

M.A. Vadillo is with the University of Deusto, School 
of Psychology and Education, Avda. Universidades 24, 
48007, Bilbao, Spain (e-mail: mvadillo@deusto.es).  

D. López-de-Ipiña is with Deusto Institute of 
Technology (DeustoTech), University of Deusto, Avda. 
Universidades 24, 48007, Bilbao, Spain (e-mail: 
dipina@deusto.es).  

This work was supported in part by Grants IT363-10 and IT458-10 
from the Education, Universities, and Research Department of the 
Basque Government. 

 

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 25

http://www.w3.org/TR/2012/WD-html5-20120320/�
http://www.w3.org/TR/2012/WD-html5-20120320/�
http://www.w3.org/DOM/�
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.w3.org/TR/2012/WD-css3-transforms-20120228/�
http://www.w3.org/TR/2009/WD-css3-transitions-20091201�
http://www.w3.org/TR/2009/WD-css3-transitions-20091201�
http://www.w3.org/TR/2011/REC-SVG11-20110816/�
http://www.w3.org/TR/2011/REC-SVG11-20110816/�
http://www.w3.org/TR/2001/REC-smil-animation-20010904/�
http://caniuse.com/#feat=svg-smil�
http://www.whatwg�.org/specs/web-apps/current-work/multipage/timers.html#timers�
http://www.whatwg�.org/specs/web-apps/current-work/multipage/timers.html#timers�
http://ejohn.org/blog/how-javascript-timers-work/�
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html�
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html�
http://dbaron.org/log/20100309-faster-timeouts�
http://dvcs.w3.org/�hg/webperf/raw-file/tip/specs/setImmediate/Overview.html�
http://dvcs.w3.org/�hg/webperf/raw-file/tip/specs/setImmediate/Overview.html�
http://www.w3.org/TR/2012/WD-animation-timing-20120221/�
http://www.w3.org/TR/2012/WD-animation-timing-20120221/�
http://caniuse.com/#feat=requestanimationframe�
http://www.w3.org/TR/2012/WD-2dcontext-20120320/�
http://www.w3.org/TR/2012/WD-2dcontext-20120320/�
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf�
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf�
http://www.w3.org/TR/DOM-Level-2-Events/events.html�
http://technet.microsoft.com/en-us/sysinternals/�bb897568.aspx�
http://technet.microsoft.com/en-us/sysinternals/�bb897568.aspx�
http://dx.doi.org/10.3758/BF03192759�
http://jsperf.com/�
http://benchmarkjs.com/�
http://www.w3.org/TR/2012/WD-hr-time-20120313/�
http://www.w3.org/TR/2012/WD-hr-time-20120313/�
http://ejohn.org/blog/accuracy-of-javascript-time/�
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications�
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications�
http://cometdaily.com/maturity.html�
http://www.w3.org/TR/websockets/�
http://websocket.org/quantum.html�
http://dev.w3.org/2011/webrtc/editor/webrtc.html�
http://dev.w3.org/2011/webrtc/editor/getusermedia.html�
http://tools.ietf.org/html/rfc5245�
http://tools.ietf.org/html/rfc5389�
http://tools.ietf.org/html/rfc5766�
http://tools.ietf.org/html/rfc3264�
http://www.ietf.org/proceedings/83/slides/slides-83-rtcweb-7.pdf�

