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Abstract—Based on the nonlinear measure about l 2-norm, 
some simple yet generic criteria are derived by using the 
general intermittent control, which ensure the exponential 
stability of dynamic systems. The numerical simulations 
whose theoretical results are applied to robust 
synchronization of complex networks demonstrate the 
effectiveness and feasibility of the proposed technique. 

Index Terms—nonlinear measure about l2-norm, the general 
intermittent control, exponential stability, synchronization; 
complex networks. 

I. INTRODUCTION 

Since its origins in the work of Fujisaka and Yamada[1-

3],Afraimovich,Verichev, and Rabinovich[4], and Pecora 
and Carrol[5], the study of synchronization of chaotic 
systems [6- 13] is of great practical significance and has 
received great interest in recent years.In the above 
literature, the approach applied to stability analysis is 
basically the Lyapunov's method. As we all known, the 
construction of a proper Lyapunov function usually 
becomes very skillful, and the Lyapunov's method does 
not specifically describe the convergence rate near the 
equilibrium point of the system. Hence, there is little 
compatibility among all of the stability criteria obtained so 
far. 

The concept named the nonlinear measur about l 2-
norm[14-19] has been applied to the investigation of the 
existence, uniqueness or stability analysis of the 
equilibrium. Intermittent control [20-24] has been used for a 
variety of purposes in engineering fields such as 
manufacturing, transportation, air-quality control and 
communication. A wide variety of synchronization or 
stabilization using the periodically intermittent control 
method has been studied (See [21-28]). Compared with 
continuous control methods[7-15], intermittent control is 
more efficient when the system output is measured 
intermittently rather than continuously. All of intermittent 
control and impulsive control are belong to switch control. 
But the intermittent control is different from the impulsive 
control, because impulsive control is activated only at 
some isolated moments, namely it is of zero duation,  
while   intermittent  control  has  a  nonzero  control width. 
Therefore,   it  is  essential  and  important  to  investigate 
the exponential synchronization of networks with mixed 
delays by periodically intermittent control. 

A special case of such a control law is of the form 
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where k denotes the control strength, 0δ >  denotes 
the switching width, and T  denotes the control period. 
The general intermittent controller 
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where ( )h n  is a strictly monotone increasing function 
on n  has been studied (See [29]). In this paper, based on 
nonlinear measur about l 2-norm and Gronwall inequality, 
the general intermittent controller 
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is designed, where ( )h n  is a strictly monotone function 
on n , then the sufficient yet generic criteria for 
synchronization of complex networks with and without 
delayed item are obtained. 

II. PRELIMINARIES 

Let X  be a Banach space endowed with the l 2-

norm , i.e. ,Tx x x x x= = , where ,  is 

inner product, and Ω be a open subset of X . We 
consider the following system: 

( ( )) ( ( )),
dx

F x t G x t
dt

τ= + −                      (3) 

where ,F G  are nonlinear operators defined on Ω , 

and ( ),x t ( )x t τ− ∈Ω , and τ  is a time-delayed 

positive constant, and (0) (0) 0F G= = . 

Definition 1[6,22,25,30]  System (1) is called to be 
exponentially stable on a neighborhood Ω   of the 
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equilibrium point, if there exist constants 0, 0mμ > > , 
such that 

0( ) exp( ) ( 0),x t m t x tμ≤ − >         (4) 

where ( )x t  is any solution of (1) initiated from 

0 0( )x t x= . 

Definition 2[15,16,18,19]   Suppose that Ω  is an open 

subset of nR , and : nG RΩ → is an operator. The 
constant 
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x y≠
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− −=
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is called the nonlinear measure of G  on Ω  with the l 2-

norm . 

Lemma 1[29]   Suppose that Ω  is an open subset of 
nR , and : nF RΩ → is a bounded operator. The 

function           

( ) ( ) ( ) , ( 0, ),f r F rI x F rI y r x y r x= + − + − − ≥ ∈Ω is  

monotone decreasing function on r ; thus the limit 
lim ( )
r

f r
→∞

 exists, and  

         ( ) ( ),
lim ( )
r

F x F y x y
f r

x y→ ∞

− −
=

−
, 

here, the operator F rI+  mapping every point x ∈Ω  
denotes ( ) .F x rx+  

Lemma 2[29]  If the operator G  in the system (3) 
satisfies 

    ( ) ( )G x G y l x y− ≤ −                          (5) 

for any  ,x y ∈ Ω , wher  l   is a positive constant. The 

solutions ( ), ( ),x t y t  initiated from  

0 0( ) ,x t x= ∈Ω 0( )y t 0 ,y= ∈Ω  of  the  system (3) 

satisfy 0 0 0exp{ ( )}, 0,x y x y t t tλ− ≤ − − ∀ ≥  

where ( ) exp{ ( ) } .m F m F lλ τΩ Ω= + −  

Corollary 1  Let ( ( )) 0, ( )G x t m Fτ λ Ω− = =  be 

defined as in Definition 2, then the result similar to 
Lemma 2 is obtained.  

III. SYNCHRONIZATION VIA GENERAL INTERMITTENT 

CONTROL AND EXAMPLES 

Consider a delayed complex dynamical network 
consisting of N  linearly coupled nonidentical nodes 
described by 

where  
1 2( , , , ) T n

i i i inx x x x R= ∈L  is the state vector 

of the ith node, , : n nf g R R→  are nonlinear vector 
functions, ( )iu t  is the control input of the ith node, and 

( )ij N NA a ×=  is the coupling figuration matrix 

representing the coupling strength and the topological 
structure of the complex networks, in which  0ija >  if 

there is connection from node i  to node ( )j i j≠ , and is 

zero, otherwise, and the constraint 
1, 1,

,
N N

ii ij ij
j j i i i j

a a a
= ≠ = ≠

= − = −   

( , 1,2, , )i j N= L , is set.  

 A complex network is said to achieve asymptotical 
synchronization if  

 
1 2( ) ( ) ( ) ( )Nx t x t x t s t= = = =L  as t → ∞ ,     (7) 

where ( ) ns t R∈  is a solution of a real target node, 
satisfying  

 
For our synchronization scheme, let us define error 

vector and control input ( )iu t  as follows, respectively: 

     ( ) ( ) ( )i ie t x t s t= - , 1 , 2 , , .i N= L  
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     In this work, the goal is to design suitable function 
( )h n  and parameters δ , T  and k   satisfying the 

condition (7). The error system follows  from the  
expression 

 
When ( )h n  is a strictly monotone increasing function 

on n  with (0) 0, lim ( ) ,
n

h h n
→+∞

= = +∞  we obtain the 

following result: 
Theorem 1  Suppose  that  the  operator  g  in the  

network (6) satisfies condition (5), and   mΩ  is defined as 

Definition 2, ( ) exp{ ( ) }m F m F lλ τΩ Ω= + − , where  

         
2
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Then the synchronization of networks (6) is achieved  if  
the parameters δ , T  and ,k η  satisfy  

  
1 ( - / )

inf ) ) 0,
h t T

t

δρ λ δ λ η
−

+ − ≥ >( (             (9) 

where 10 , ( )k hρ λ −= − > g  is the  inverse function of  

the function ( ).h g  

Proof  From Lemma 2, the conclusion is valid: 
 ( ) ( ( ) ) exp{ ( ( ) )}e t e h n T t h n Tλ≤ − −           (10) 

for any ( ) ( )h n T t h n T δ≤ < + ; 
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≤ −
when , ( ) 0t e t→ +∞ →  is obtained under the 

condition (9). So the synchronization of the network (6) is 
achieved. 

When ( )h n  is a strictly monotone decreasing function 
on n  with lim ( ) 0

n
h n

→ + ∞
= ∞，h( 0) =+ , we obtain the 

following result: 
Theorem 2  Suppose that the operator g  in the  

systems (6) satisfies condition (5),and mΩ  is defined as 

Definition 2, , ( )e tl  are the same as Theorem 3. Then 
the synchronization of networks (6) is achieved if the 
parameters δ , T  and ,k η  satisfy                    

1 ( )
in f(( ) ) 0 ,

h t

t
ρ λ δ λ η

−

+ − ≥ >                (12) 

where 10, ( )k hρ λ −= − > g  is the  inverse function of  

the function ( ).h g  

The proof of Theorem 2 is similar to that of  Theorem 1. 
It is omitted, here. 

Corollary 2 Let ( ( )) 0, ( )g x t m Fτ λ Ω− = =  be 

defined as in Definition 2, and the condition (9)  or (12) , 
respectively,  is satisfied. Then the result similar to 
Theorem 1 or Theorem 2 is obtained. 

Corollary 3  Supposing that 
1( ) ,h n p n= 2 ,p Tδ =  

1 0p > , and the rest of restricted conditions are 

invariable. Then the synchronization of the network (6) is 
achieved if the parameters , Tδ and ,k η satisfy 

2

1

( ) 0 ,
p

p
ρ λ δ λ η+ − ≥ >                         (13) 

Corollary 4 when 0 , , 1, 2 , ,ija i j N= = L , the 

result similar to Theorem 1 or Theorem 2 is obtained if the 
condition (9)  or (12) , respectively,  is satisfied.  

In the simulations of following examples, we always 
choose 40, 5, 4, 16,N T kd= = = = the matrix    

14 1 1 1 1 1 1 1 1 2 0 0 0 2 0 1 0 0 0 1

2 8 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0

2 0 6 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

3 1 0 9 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 6 0 1 0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 0 3 0 1 0 1 0 0 0 0 0 0 0 0 0

1 2 0 1 1 0 0 7 0 0 2 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 8 1 0 2 1 0 0 1 0 0 0 0

0 0 0 1 1 0 0 1
P

−
−

−
−

−
−

−
−

−

=
2 9 0 0 0 0 1 0 1 1 0 1

1 0 1 0 0 2 0 0 0 2 7 0 0 0 0 0 0 0 1 0

1 0 0 2 0 0 0 0 2 0 0 6 0 0 0 0 0 0 0 1

0 0 0 2 0 0 0 0 0 1 1 2 10 0 1 1 0 0 2 0

0 1 0 0 0 0 0 0 0 0 1 0 2 5 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 2 1 5 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 2 1 0 7 0 1 0 0

0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 2 5 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 2 6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3

−
−

−
−

−
−

−
−

−
7 3

1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 2 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

− 

, 

( 14, 8, 6, 9,Q diag= - - - - 5, 6, 3,- - - 7, 8, 9,- - -  

7, 6, 10, 5, 5, 7, 5, 6, 7, 7)- - - - - - - - - - . 

Example 1  Consider  a  delayed  Hopfield neural 
network[31-32] with two neurons: 

                       (14) 

where  1 2 1( ) ( ( ), ( )) , ( ( )) (tanh( ( )),Tx t x t x t f x t x t= =  

2tanh( ( ))) , (1),Tx t τ =  and  

1 0 2.0 0 .1 1 .5 0 .1
, , .

0 1 5 .0 3 .0 0 .2 2 .5
C D B

− − −     
= = =     − − −     

      It should be noted that the network is actually a 
chaotic delayed Hopfield neural network. 

We reach the value 9.15, ( ) 0.7993,l m FΩ< ≤  here 

( ( )) ( ) ( ( )), ( ( )) ( ( )).F x t Cx t Df x t g x t Bf x tt t=- + - = -  the 

function  2( ) / ( 1),h n n n= + , ( ) 0 .3 / ,h n n=  which 
are the strictly monotone increasing or decreasing function 
on n , respectively, then they can be clearly seen that the 
synchronization of network (6) is realized in Fig.1、Fig.2 
( A≠0), where (0.2 ,0.2 ),A diag P P=  and Fig.3、 Fig.4 
(A=0), respectively. 
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Figure 1.  Synchronization error

1 11,ix x− 2 12,( 2,3, ,40)ix x i− = L   

when 
2( ) / ( 1), 0.h n n n A= + ≠  
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Figure 2.  Synchronization error 

1 11,ix x− 2 12,( 2,3, ,40)ix x i− = L  

when ( ) 0 .3 / , 0 .h n n A= ≠  
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Figure 3.  Synchronization error

1 11,ix x− 2 12,( 2,3, ,40)ix x i− = L   

when 
2( ) / ( 1), 0.h n n n A= + =   
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Figure 4.  Synchronization error 

1 11,ix x− 2 12,( 2,3, ,40)ix x i− = L  

when ( ) 0 .3 / , 0 .h n n A= =  

Example 2  Consider hyper-chaotic Chen system[33]  : 

           

We reach the value ( ) 5.0304,m FΩ ≤ here 

( ) (35( ) ,7 12 , 3 , 0.5 ) .TF t y x w x xz y xy z yz w= − + − + − +
We choose the function   ( ) ln( 1),h n n= +   

( ) 0.3 / ,h n n= which are strictly monotone increasing or  
decreasing function on n , respectively, then they can be 
clearly seen that the synchronization of network (6) is 
realized in Fig.5、Fig.6 ( A≠0), where  

0 .2 ( ) 0 .2 ( )
,

0 .2 ( ) 0 .2

P Q P Q
A

P Q Q

+ − 
=  − 

 

 and Fig.7、Fig.8 (A=0), respectively. 
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Figure 5.   Synchronization error

1 ,( 2,3, ,40, 1,2,3,4)ij jx x i j− = =L ， 

when ( ) ln( 1), 0.h n n A= + ≠  
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Figure 6.  Synchronization error 
1 ,( 2,3, ,40, 1,2,3,4)ij jx x i j− = =L  

when ( ) 0 .3 / , 0 .h n n A= ≠  
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Figure 7.  Synchronization error 
1 ,( 2,3, ,40, 1,2,3,4)ij jx x i j− = =L  

when ( ) ln ( 1) , = 0 .h n n A= +  
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Figure 8.  Synchronization error 
1 ,( 2,3, ,40, 1,2,3,4)ij jx x i j− = =L  

when ( ) 0.3/ , =0.h n n A=  
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IV. CONCLUSION 

Approaches for synchronization of complex networks 
via general intermittent which use the nonlinear operator 
named the measure about l2-norm have been presented in 
this paper. Strong properties of global and exponential 
synchronization have been achieved in a finite number of 
steps. The techniques have been successfully applied to 
Chaotic delayed Hopfield neural networks and hyper-
chaotic Chen system. Numerical simulations have verified 
the effectiveness of the method. 
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