
SPECIAL FOCUS PAPER
A GENERIC LINUX CPUFREQ DRIVER FOR ARM SOCS

A Generic Linux CPUFreq Driver for ARM SoCs
http://dx.doi.org/10.3991/ijoe.v9iS6.2797

Lei Zhou1, Qiang Lv2 and Shengchao Guo3
1 Changshu Institute of Technology, Changshu, China

2 Soochow University, Suzhou, China
3 Freescale Semiconductor, Inc., Shanghai, China

Abstract—Linux CPUFreq subsystem provides a framework
for implementing Dynamic Voltage and Frequency Scaling
(DVFS) to prolong batter life of mobile devices. Instead of
creating hardware specific CPUFreq driver for every single
ARM System on Chip (SoC) from different vendors, this
paper presents the design and implementation of a generic
CPUFreq driver. Managing the hardware specific clock and
voltage details via Linux Common Clock Framework and
Regulator subsystem, the driver can scale CPU frequency
and voltage in a generic way, and thus should work for the
majority of the ARM SoCs today. Freescale i.MX6 Quad
was taken as the target hardware to develop and test the
driver. A measurement on the hardware reports 37% CPU
power saving in a typical video playback application. The
feedback from Linux community tells that the driver works
for OMAP and Calxeda processors as well, and hence the
driver was merged into Linux 3.7 release as a generic
CPUFreq driver for ARM SoCs.

Index Terms—ARM, CPUFreq, DVFS, i.MX6 Quad.

I. INTRODUCTION
With the popularity of mobile computing, people

increasingly want their devices run a longer battery life
without any user experience downgrading. That’s why
power efficiency becomes a very important fact of system
design and implementation. Besides the traditional static
power management [1], which manages power for
particular system states like Standby, Suspend and
Hibernate, system design starts adopting Dynamic Power
Management (DPM) [2] to aggressively manage power
consumption at runtime. Being one of the most typical
DPM technologies, Dynamic Voltage and Frequency
Scaling (DVFS) is widely adopted by both hardware and
software design, and proved to be an effective way to
reduce system power consumption without noticeable
performance loss [3, 4, 5].

As the most successful processor architecture in mobile
market, ARM becomes the dominator on devices like
phones and tablets, primarily because of its excellent low
power performance. Being one of the well known ARM
System-on-Chip (SoC) vendors, Freescale offers i.MX
6Quad processor for mobile applications [6]. This SoC
integrates ARM Cortex-A9 quad cores to provide high
performance, and meanwhile it’s designed with many
DPM considerations to provide the lowest power
consumption. For DVFS example, the clock frequency
and power supply to CPU core can be scaled on the fly
simply with a few register accesses. On the software side,
Linux becomes the most popular operation system used on
mobile devices, not only because it’s free and open but
also it offers great power management support. Linux

CPUFreq subsystem provides a framework for different
CPU to implement DVFS function based on low level
hardware support [7, 8]. What authors initially try to do is
only to implement a CPUFreq driver for i.MX6 Quad
SoC. After studying a few other ARM SoC vendors’
CPUFreq drivers, authors found that there are a lot of
commonalities among these drivers, and decided to design
and implement a generic CPUFreq driver rather than
creating yet another vendor specific one.

This paper is organized as follows. Section II introduces
the Linux CPUFreq subsystem, including how CPUFreq
governors work and the registration of CPUFreq drivers.
Section III elaborates the design principles and
implementation details of the generic cpufreq-cpu0 driver.
It introduces the prerequisites of cpufreq-cpu0 driver,
CLK framework, Regulator subsystem, OPP library, and
then illustrates how they work for cpufreq-cpu0 driver in
the cpu0_set_target() procedure. Section IV gives the
testing result of running cpufreq-cpu0 driver on i.MX6
Quad in a couple of typical use cases, web browsing and
video playback. Finally, Section V shares the feedback
from Linux community on this generic driver.

II. LINUX CPUFREQ SUBSYSTEM
To support DVFS implementation on different CPU

architectures, CPUFreq subsystem was introduced on
Linux 2.6 with a layered design illustrated in Fig. 1.

Figure 1. CPUFreq framework architecture

Designed in such a hierarchical architecture, CPUFreq
subsystem can effectively separate two aspects of DVFS,
policy and mechanism. Policy means when to scale

powernowd User space
daemons

Kernel space governors

Performance Powersave Userspace

Ondemand Conservative

CPUFreq driver manager and sysfs interface

CPU specific drivers

exynos-cpufreq

omap-cpufreq

powernow-k8

speedstep-centrino

cpuspeed

iJOE ‒ Volume 9, Special Issue 6: "AIAIP2012", July 2013 29

SPECIAL FOCUS PAPER
A GENERIC LINUX CPUFREQ DRIVER FOR ARM SOCS

voltage and frequency, which is a decision made by
CPUFreq governors. And mechanism means how to scale,
that is an implementation provided by individual CPUFreq
driver. Policy is CPU independent, while mechanism is
CPU specific. And user space will see a unified interface
no matter which CPU the kernel is running on, since all
the CPU specific details is handled by underneath
CPUFreq driver.

A. CPUFreq Governors
There are totally five governors provided by Linux

CPUFreq framework as shown in Fig. 1. They are
designed for different use cases and can be switched at
run-time using sysfs interface. The governor Performance
sets the CPU statically to the highest frequency
scaling_max_freq, while Powersave sets CPU to the
lowest frequency scaling_min_freq. The governor
Userspace sets the CPU to the frequency specified by the
user space program, typically like daemon cpuspeed or
powernowd as shown in Fig. 1, through sysfs entry
scaling_setspeed. Ondemand checks the CPU load
regularly, and sets the CPU to run at the highest frequency
when the load rises above up_threshold. When the load
falls below the same threshold, it sets the CPU to run at
the next lowest frequency. Similar to Ondemand,
Conservative also checks the CPU load. But when the
load rises above up_threshold, it sets the CPU to run at the
next highest frequency, and when the load falls below
down_threshold, it sets the CPU to run at the next lowest
frequency.

B. CPUFreq Governors
In CPUFreq framework, CPUFreq driver is the one who

actually accesses hardware to have CPU frequency and
voltage scaled. A CPUFreq driver is added to the
framework by registering a struct cpufreq_driver to the
CPUFreq core using cpufreq_register_driver(). The most
important members of the structure are three function
hooks: init, verify and target.

The init is a per-CPU initialization hook, which will be
called whenever a new CPU is registered with the device
model. It takes a struct cpufreq_policy *policy as
argument and should set policy->cur as the current CPU
operating frequency, and set up a few other members in
policy and policy->cpuinfo as well. The verify hook is
called to validate the frequency table when the user
decides on a policy. The target function hook takes the
new frequency to be set on the CPU as argument, and
accesses hardware to scale the CPU frequency to the one
requested.

III. GENERIC CPUFREQ DRIVER
As a typical ARM Symmetric Multiprocessing (SMP)

multi-core SoC, i.MX6 Quad has all four Cortex-A9 cores
in one cluster and share the same clock and voltage
source. In terms of DVFS support, that means all the
CPUs will be scaled together. With some coordination at
software level, the DVFS support on such SMP system
can be effectively implemented by managing the CPU0
frequency and voltage scaling. Such hardware design is
commonly found on most of ARM multi-core SoCs,
OMAP4 from TI, Exynos from Samsung, etc. So if there
are generic interfaces for CPUFreq driver to operate on
clock and voltage in spite of the differences at hardware
level, the CPUFreq driver can also be generic on all this

type of ARM SoCs. Fortunately, Linux kernel has APIs
for clock and voltage management: CLK framework,
Regulator subsystem and Operating Performance Points
(OPP) library. They can act as the interface between the
generic cpufreq-cpu0 driver and the actual hardware as
shown in Fig. 2.

Figure 2. Generic cpufreq-cpu0 driver architecture

The reason cpufreq-cpu0 driver can be generic is that
the low level hardware differences are all handled by the
underneath support infrastructures, CLK framework,
Regulator subsystem and OPP library. The Common CLK
Framework (CCF) was introduced on Linux 3.4 and
provides a suite of APIs defined in include/linux/clk.h for
device drivers to manage clock. The cpufreq-cpu0 driver
can use clk_get_rate(), clk_round_rate() and
clk_set_rate() to control CPU frequency. Similar to CCF,
the Regulator subsystem is designed to provide a standard
kernel interface to control voltage regulators. On i.MX6
Quad the CPU voltage is controlled by module Power
Management Unit (PMU). And PMU should be
implemented as a regulator driver and registering the CPU
regulator to the core, so that cpufreq-cpu0 driver can call
regulator APIs regulator_set_voltage_tol() to change CPU
voltage and regulator_set_voltage_time() to query the
voltage ramping up time which should be a factor of
frequency transition latency. OPP library provides a set of
useful helper functions that can be found in
include/linux/opp.h to read the operating point data from
device tree [9], organize it in OPP, and help CPUFreq
driver to query and retrieve the data conveniently.

As described in Section II, a CUPFreq driver is
essentially a piece of code that implements a struct
cpufreq_driver and calls cpufreq_register_driver() to
register the structure to CPUFreq framework. And the
most important part of struct cpufreq_driver is the
functions hook target, which is cpu0_set_target() in
cpufreq-cpu0 case. Whenever CPUFreq governor requests
to transit to a new target frequency, the function will call
CLK and Regulator APIs to change CPU frequency and
voltage as requested. The flow chart in Fig. 3 illustrates
the primary steps of the procedure.

It’s very dangerous to have hardware run at a frequency
with a voltage that is lower than required, even for a very
short period. That’s why the sequence of scaling voltage
and frequency is different between frequency increasing
and decreasing case.

i.MX6 Quad OMAP4

Clock Volt

CLK framework Regulator

cpufreq-cpu0

OPP

CPU0 CPU1
CPU2 CPU3

CPU0 CPU1

Clock Volt

30 http://www.i-joe.org

SPECIAL FOCUS PAPER
A GENERIC LINUX CPUFREQ DRIVER FOR ARM SOCS

Figure 3. cpu0_set_target() flow chart

The CPU frequency is concerned by other components
in Linux kernel, like the global variable loops_per_jiffy
which is used to implement miscellaneous delay functions
udelay(), and mdelay(). The variable is calculated based
on CPU frequency, so has to be updated accordingly
whenever CPU frequency changes. The notifications
CPUFREQ_PRECHANGE and
CPUFREQ_POSTCHANGE shown in Fig. 3 are used to
inform the change of CPU frequency, so that others can
have a mechanism to react to the CPU frequency changes.

IV. MEASUREMENT AND DISCUSSION
Authors added a CPUFreq support for Freescale i.MX6

Quad SoC based on the generic cpufreq-cpu0 driver. It
uses the operating points settings recommended by
Freescale, 198/396/792 MHz CPU frequencies with the
coupled voltage at 0.85/0.95/1.1 V. Measurement on
i.MX6 Quad SABRE Smart Device (SabreSD) reference
design board demonstrates that with Ondemand governor
the driver can effectively reduce the power consumption
of CPU cores without noticeable performance loss.

A. Measurement Setup
The i.MX6 Quad SabreSD board is designed as the

reference for tablets. It’s equipped with eMMC as the
storage and LVDS as the display device to support
running those popular desktop systems. Ubuntu 12.04
LST is chosen as the desktop environment for the
measurement, as it provides a plenty of handy applications
for measuring power in typical use cases like web
browsing, video playback. Furthermore, the board has a
design consideration to ease the power measurement.
There is a 0.02 ohm current sensing resistor on
VDDCORE power supply, as illustrated in Fig. 4.

From the identity P = V * I, the power of ARM cores
will be calculated out if the current can be measured, as
VDDCORE is known as 1.425 V. With that 0.02 ohm
current sensing resistor R on board, authors can measure
the voltage drop V! across the resister with a voltmeter,
and then calculate the current from identity I = V! / R.
Fluke 117C Digital Multimeter is used in the measuring,

as it provides 0.1 mV precision and supports averaging
function.

Figure 4. Power measurement setup

B. Web Browsing Test
Web browsing is a typical application where user

experience is very important. People browsing web pages
are generally sensible to the page load time. Authors
attempt to see if CPUFreq support can gain some power
saving without noticeable user experience impact. In this
test, browser Firefox is used to load the page
http://www.mozilla.org/en-US/ with 3 different CPUFreq
governors. The test iteration consists of the following
steps.
1. Go to Firefox menu Tools, Clear Recent History… to

clean the browser cache.
2. Open page http://www.mozilla.org/en-US/ and start

measuring voltage drop V! using at the same time.
3. Keep looking at the page load percent shown on

Firefox status bar (Extended Statusbar Add-on
installation is required), and stop voltage measuring
as soon as the page load completes.

4. Read the page load time (T) from Firefox status bar
and read average voltage (V!) from voltmeter.

The test results are collected in Table 1. In case of
CPUFreq governor being Performance, CPU will always
run at 792 MHz, which is equivalent to that CPUFreq is
not enabled. So the last row can be treated as the result of
no CPUFreq support.

-

VDDCORE
(1.425 V)

0.02 ohm

+ V

R

PMU

ARM cores

i.MX6 Quad

cpu0_set_target()

Call cpufreq_notify_transition() to send
CPUFREQ_PRECHANGE notification.

Find the voltage for freqs.new from OPP
by calling opp_find_freq_ceil() and

opp_get_voltage().

freqs.new >
freqs.old?

Call clk_set_rate() to scale
frequency down first and

then call
regulator_set_voltage_tol()

to scale voltage down.

Call cpufreq_notify_transition() to
send CPUFREQ_POSTCHANGE

notification.

Call
regulator_set_voltage_tol()
to scale voltage up first and
then call clk_set_rate() to

scale frequency up.

No

End

Call cpufreq_frequency_table_target() to get
the new frequency as freqs.new, and call
clk_get_rate() to get the current frequency as
freqs.old.

Yes

iJOE ‒ Volume 9, Special Issue 6: "AIAIP2012", July 2013 31

SPECIAL FOCUS PAPER
A GENERIC LINUX CPUFREQ DRIVER FOR ARM SOCS

As shown Table 1, the power (P) of Powersave case is
%77 less than Performance. But since Powersave always
forces CPU to run at the lowest frequency 198 MHz, it
will take much longer time to finish a job. In the test, it
takes almost triple time than Performance to complete the
page load. Even though it eventually saves 29% power
consumption (P * T) than Performance, it’s not an ideal
policy choice, because it takes so much time to do the
work and will impact user experience badly. In
comparison, Ondemand governor plays well in the
balance between power saving and performance impact. It
takes a little longer time (0.365 s) that people do not feel
about to load the page, while saves %6 power
consumption than Performance.

C. Video Playback Test
Video playback is another typical application on mobile

devices, and it’s used by many benchmarks to evaluate the
battery life of devices. In this test, a 1080p H.264 video
clip stored on eMMC card is played to see the effect of
CPUFreq support on i.MX6 Quad. Table 2 gives the
power data for Performance and Ondemand governors.

As the time of playing a given video clip is fixed, the
P(mW) can essentially stand for the power consumption in
that case. So the data tells that CPUFreq with Ondemand
governor can approximately save 37% power
consumption than no CPUFreq support. It also tells that
video playback on i.MX6 Quad system does not
necessarily need to keep CPU cores running at 792 MHz
all the time. It can be reasonably explained by the fact that
i.MX6 Quad has integrated Video Processing Unit (VPU)
for video decoding and built DMA support for all those
high speed peripherals. Using a script to launch the video
player and check the sysfs entry /sys/devices/system/cpu/
cpu0/cpufreq/stats/time_in_state at the beginning and
ending of the playback respectively, we can calculate the
time spent in each state during the playback. As shown in
Fig 5, there is 34% time in total that CPU cores haven’t
been running on 792 MHz, and it explains the power
saving that’s measured above.

I. LINUX COMMUNITY FEEDBACK
After verifying that the generic cpufreq-cpu0 driver can

effectively reduce system runtime power consumption,
authors submitted it to Linux community for mainline
inclusion. The feedback from community people tells that
the driver works well on other ARM SoCs too both single
core and SMP systems, like TI OMAP, Calxeda Highbank
processors. While achieving the goal of power saving, this
generic driver avoids a lot of code duplication and eases
the long term maintenance of CPUFreq drivers. As the
result, it s accepted by Linux CPUFreq subsystem
maintainer and finally merged into Linux 3.7 release.

REFERENCES
[1] Patrick Mochel, “Linux Kernel Power Management,” Proceedings

of the Linux Symposium, Ottawa, Canada, 23-26, July, 2003, pp.
326-339.

[2] L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,”
IEEE Transactions on VLSI Systems, Vol. 8, Issue 3, 2000, pp.
299-316. http://dx.doi.org/10.1109/92.845896

[3] Zhang YuHua, Qian LongHua, Lv Qiang, “A Practical Dynamic
Frequency Scaling Solution to DPM in Embedded Linux
Systems,” Journal of Computers, Vol. 4, Issue 8, 2009, pp. 787-
793.

TABLE I.
WEB BROWSING POWER DATA

Governor V!
(mV)

P (mW) =
1.425 * V! /

0.02
T (s) P * T

Powersave 1.5 106.875 14.603 1560.696
Ondemand 5.7 406.125 5.078 2062.303

Performance 6.5 463.125 4.713 2182.708

TABLE II.
VIDEO PLAYBACK POWER DATA

Governor V! (mV) P (mW) = 1.425 * V! / 0.02

Ondemand 2.4 171.00
Performance 3.8 270.75

198 MHz
29%

396 MHz
5%

792 MHz
66%

Figure 5. Time percentage in different states

[4] Lu Chunpeng, “Function of Dynamic Voltage and Frequency
Scaling in Power Reduction,” Microcontrollers & Embedded
Systems, Issue 5, 2007, pp. 12-15.

[5] HUANG Jianke, ZHOU Yun, “Research of Low Power SoC
Technology Based on Self-adaptive DVFS,” Modern Electronics
Technique, Vol. 32, Issue 7, 2009, pp. 120-122.

[6] Freescale Semiconductor, Inc., i.MX 6Dual/6Quad Applications
Processor Reference Manual, 2012.

[7] Jenifer Hopper, IBM, Reduce Linux Power Consumption, 2009.
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/

[8] GU Li-hong, LIN Zhi-qiang, WU Shao-gang, “Research and
Implementation of Software Layer Dynamic Frequency Scaling
Based on Loongson,” Computer Engineering, Vol.37, Issue 9,
2011, pp. 41-43.

[9] Grant Likely, Josh Boyer, “A Symphony of Flavours: Using the
device tree to describe embedded hardware,” Proceedings of the
Linux Symposium, Ottawa, Canada, 23-26, July, 2008, pp. 27-38.

AUTHORS
Lei Zhou is with School of Computer Science and

Engineering, Changshu Institute of Technology, No. 99,
South Third Ring Road, Changshu, Jiangsu Province,
215500, China (e-mail: zhoulei@cslg.edu.cn).

Qiang Lv is with School of Computer Science and
Engineering, Changshu Institute of Technology, No. 99,
South Third Ring Road, Changshu, Jiangsu Province,
215500, China (e-mail: qiang@suda.edu.cn).

Shengchao Guo is with Freescale Semiconductor
(Shanghai Branch), Inc. No. 192 Liangjing Road, Pudong
New Area, Shanghai, 201203, China (e-mail:
shawn.guo@freescale.com).

This work was supported in part by the National Natural Science
Foundation of China under Grant 60970055. It is an extended and
modified version of a paper presented at the 2012 International
Conference on Artificial Intelligence and Its Application in Industry
Production (AIAIP 2012), held in Wuhan, China in December 2012.
Manuscript received 14 May 2013. Published as submitted by the authors
26 June 2013.

32 http://www.i-joe.org

	iJOE – Vol. 9, Special Issue 6: "AIAIP2012", July 2013
	A Generic Linux CPUFreq Driver for ARM SoCs

