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Abstract—In many complex systems such as distributed 
multi-sensor systems, different sensors may work with mul-
tiple sampling periods.  In this paper, the problem of fault 
detection for this kind of systems is considered. Firstly, by 
mapping the multirate measurements onto fast time in-
stants, a new measurement equation with variable dimen-
sions is obtained. Based on this, a multirate Kalman filter 
based residual generator is designed to deliver residual sig-
nal at a fast rate, which is further evaluated in a dynamic 
window. The proposed scheme has no need to process some 
troublesome issues such as noise correlation and causality 
constrains caused by traditional lifting technique. A numer-
ical simulation is presented to illustrate our approach. 

Index Terms—Fault detection, multirate Kalman filtering, 
residual evaluation 

I. INTRODUCTION 
As modern industrial systems tend to be more and more 

complex and large in scale, the demand for higher system 
safety and reliability is continuously growing. However, 
no matter how to enhance the quality and reliability for 
individual components such as sensors, actuators, control-
lers and plants, an overall fault-free system cannot be 
guaranteed. Once a fault occurs, it may result in a degra-
dation of system performance or even a crash. So it is im-
portant to detect fault promptly so that appropriate reme-
dies can be applied. In this context, fault detection and 
isolation (FDI) has received considerable attentions from 
academia and industry in past three decades [1-3]. On the 
other hand, in many large scale systems like distributed 
multi-sensor systems and chemical process, the sampling 
rates of different sensors may not be equal due to numer-
ous reasons such as hardware constraints and physical 
property of measurable variables, introducing the so-
called multirate sampling [4-5]. Multirate systems can 
achieve some objectives that can not be accomplished by 
single rate systems and can provide a better tradeoff be-
tween performance and implementation cost [6]. However, 
some difficulties on design complexity and real time FDI 
have also been brought by multirate sampling. 

A traditional way to deal with multirate sampling is us-
ing lifting technique to convert multirate systems into a 
slow rate LTI system [4]. Based on this technique, disturb-
ance decoupling fault diagnosis observer, parity space 
based residual generators, !"  and 2!  optimal residual 
generators have been developed in [7-9], respectively. 
However, all above fault detection methods deliver resid-
ual signals at the end of the repetition period, which may 

result in detection delay and belong to slow rate fault de-
tection schemes. It is reasonable to hope that residual can 
be obtained one after another in the repetition period to 
detect fault in time, i.e., fault rate fault detection scheme. 
Iman and Zhong et al. focus on the problem of optimal 
fast rate fault detection for multirate sampled systems [10-
11]. Their research ideas are similar. Firstly, a set of slow 
rate residual generators is designed based on the lifted 
model of multirate sampled system. Then the fact that the 
optimal solution is not unique makes it possible to find 
some residual generators satisfying causality constraints. 
Finally, the slow rate (vector) residual will be inversely 
lifted to detect fault at the fast sampling rate. In [10], the 
design is under the framework of parity space, the key of 
the method is using parity matrix to replace parity vector 
so that a vector residual can be obtained.  Applying the 
inverse lifting operation can deliver a scalar residual at 
every instant in the repetition period. Different from the 
residual generator in [10], an optimal fast rate fault detec-
tion filter designed in [11] by using of factorization tech-
nique generates the residual only when measurements are 
available. It should be stressed that in [10-11] most efforts 
focus on how to deal with the so-called causality con-
straints. The proposed methods are involved and not sys-
tematic. Therefore, some fast rate fault detection methods 
which can avoid causality constraint are pursued. As for 
stochastic multirate sampled systems, a show rate Kalman 
filter based residual generator is designed with the aid of 
lifting technique [12]. In [13], by combing the lifting and 
elementary transformation technique, the multirate sam-
pled systems is firstly converted into a LTI system satisfy-
ing causality constrain. A sequential Kalman filtering al-
gorithm is then proposed to generate residual at the fast 
rate. Although the proposed scheme can avoid the trouble-
some causality constraint, the correlations between pro-
cess noise and measurement noise and the auto-
correlations between measurement noises caused by lift-
ing technique make the design to be very complicated.  

In this paper, a simple and intuitive fast rate fault detec-
tion scheme is developed for multirate sampled system. 
Instead of lifting technique, we use measurement mapping 
technique to build a new measurement equation. Based on 
this, a multirate dynamic Kalman filtering method is de-
signed to generate residual at the fast rate. On account of 
the variation of residual dimension, the residual is evalu-
ated in a dynamic window to guarantee a constant thresh-
old. The proposed scheme not only has no need to cope 
with causality constraint but also avoid the problem of 
noise correlations.   
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II. DESCRIPTION OF MULTIRATE SAMPLED SYSTEMS 
Consider the following discrete time LTI system:  

( 1) ( ) ( ) ( ) ( )x k Ax k Bu k Ef k w k+ = + + +         (1) 

( ) ( ) ( ) ( ) ( )y k Cx k Du k Ff k v k= + + +             (2) 
where ( ) nx k ! ! , ( ) unu k !! , ( ) my k ! ! denote the sys-
tem state, the known control input and the measurable 
outputs, respectively. ( ) fnf k !! is the unknown con-
stant or time-varying fault to be detected. The process 
noise ( )w k  and measurement noise ( )v k  are zero mean 
white Gaussian random sequences with variances W and 
R . Further assume that the two noise sequences and 
measurement noises sequences are uncorrelated, 
i.e., T[ ( ) ( )] 0E w k v k = , T

1[ ( ) ( )] { , }mE v k v k R diag R R= = ! . The 
initial state (0)x  is also assumed to be a Gaussian dis-
tributed random variable with the known mean x  and 
variance 0P . The two noise sequences and the initial state 
are mutually independent. , , , , ,A B C D E F are some 
known matrices with approximate dimensions  

In multirate sampled systems, the control input ( )u k  is 
generally updated at the fast sampling rate T [10-11]. Each 
component ( ), (1, , )iy k i m= !  in the system outputs is 
sampled at the different rate in T . Define 

1 2l.c.m.( , , , )mN n n n= ! , where l.c.m.  stands for least 
common multiple. It is easy to prove that the multirate 
sampled system described above is a periodic time vary-
ing system with the repetition period sT NT= [11]. The we 
can obtain that i iQ N n= represents the number of i th 
output data in one repetition period. iQ Q=!  is the total 
number of all output data in one repetition period. As for 
this class of periodic system, discrete lifting technique is 
generally used to convert it into a slow rate LTI system 
with basic period sT . However, discrete lifting technique 
extends the dimension of system output and makes the 
process and measurement noises correlated, which add 
difficulties to the analysis and synthesis of system.  

To overcome the above problem and be capable of fast 
rate real time fault detection, the dynamic features of mul-
tirate sampled system will be considered at every fast rate 
time instant. Therefore, mapping all multirate sampled 
measurements onto fast rate time instants, measurements 
equation (2) can be rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y k C k x k D k u k F k f k v k= + + +       (3) 
where ( )y k  is the mapping of multirate sampled meas-
urement at time instant k . ( )C k  is the row-combination 
of the corresponding measurement matrices iC , satisfy-
ing mod( , ) 0ik n = for (1, , )i m= ! . It is obvious that 

( )C k is a time varying function with period sT . Similar-
ly for ( )D k , ( )F k , ( )v k  and T( ) [ ( ) ( )]R k E v k v k= .  
Remark 1. By measurement mapping, multirate sampled 
system has the new form of (1), (3). Although the dimen-
sions of system matrices in (3) are varying at different 
time instants, the process and measurement noises are 
still independent, i.e., T[ ( ) ( )] 0E w k v k =  and ( )R k is a 
diagonal matrix.  

Remark 2. At some time instant k , if it does not hold 
that mod( , ) 0ik n =  for all i  ( 1, , )i m= ! , no measure-
ment can be obtained at the time. It could be considered 
that the variance of ( )v k  at time instant k  is infinity, 
i.e., T[ ( ) ( )] ( )E v k v k R k= = !  

III. FAULT DETECTION DESIGN 
Based on the multirate sampled system description (1), 

(3), the fault detection scheme is given in this section. 
Firstly, a multirate Kalman filtering algorithm is devel-
oped to generate residual, and then a corresponding resid-
ual evaluation is designed.  

A. Residual Generation 
The Kalman filter based residual generator is one of the 

first residual generation schemes [1]. However, since the 
dimensions of system matrices in [3] is time varying and 
there is no measurement at some time instant, the corre-
sponding multirate Kalman filtering algorithm has some 
differences with the conventional Kalman filtering, as 
shown in the following.   

Suppose at time instant 1k ! , one has the state estima-
tion ˆ( 1| 1)x k k! !  and the covariance matrix 
( 1| 1)P k k! ! . Then the multirate Kalman filtering algo-

rithm is recursively implemented by the two following 
steps.  
One-Step Prediction:  

ˆ ˆ( | 1) ( 1| 1) ( 1)x k k Ax k k Bu k! = ! ! + !           (4) 
T( | 1) ( 1| 1)P k k AP k k A W! = ! ! +             (5) 

where ˆ( | 1)x k k ! and ( | 1)P k k ! denote one-step predic-
tion state estimation and one-step estimation error covari-
ance matrix, respectively.  
Update:  

Since there may be no measurement at some time in-
stant k , the update step should be given under different 
situations. One can divide the time instant k  into two 
categories: { }1= | mod( , ) 0, 1, ,ik k n i m! = !"  and 

{ }2= | mod( , )=0, 1, ,ik k n i m= !" .  

Case 1: For time instant 1k!!   
ˆ ˆ( | ) ( | 1)x k k x k k= !  ( | ) ( 1| )P k k P k k= !      (6) 

Case 2: For time instant 2k!!   
ˆ ˆ( | ) ( | 1) ( )

ˆ( ( ) ( ) ( | 1) ( ) ( ))
x k k x k k L k

y k C k x k k D k u k
= ! +

! ! !
        (7) 

T

T 1

( ) ( | 1) ( )
( ( ) ( ) ( | 1) ( ))

L k P k k C k
R k C k P k k C k !

= !

+ !
        (8) 

( | ) ( ( ) ( )) ( | 1)P k k I L k C k P k k= ! !                   (9) 

where ( )L k  is the filter gain.  
The underlying idea of applying Kalman filter for fault 

detection lies in making using of the statistical property of 
innovation in the update step. Note that for 1k!! , no 
measurement means no innovation. Therefore, the residual 
signal can be defined as follows:  
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The above equation (10) gives the form of multirate 
Kalman filter based residual generator. Next the available 
residual signal needs to be further evaluated to achieve 
successful fault detection.  

B. Residual Evaluation 
By further analysis of residual signal, one can find that 

for 2k!! , the residual signal ( )r k  is a zero-mean white 
Gaussian noise with variance 

T( ) ( ) ( ) ( | 1) ( )k R k C k P k k C k! = + "  under the fault-free 
case. Define the following scalar function:    

1
T 1

2

0
( )

( ) ( ) ( )e

k
r k

r k k r k k!

"#$
= %

& "$'

!
!

           (11) 

Then ( )er k , 2k!!  is a random variable satisfying 2!  
distribution under the fault-free case. When a fault occurs, 
the statistical property of ( )er k  has changed. However, 
since the degree of freedom of ( )er k  equals to the dimen-
sion of ( )y k , it is also time varying, which bring some 
difficulty to threshold setting. Recall that the system ma-
trices are periodic time varying with period sT NT=  and 
there are always Q  measurements in one repetition peri-
od. Thus, we should evaluate the residual in a dynamic 
window with the length sT :  

( ) ( )
k

f e
k N

r k r k
!

="                            (12) 

Obviously, ( )fr k  is a random variable satisfying 2!  
distribution with the degree of freedom equal to Q . Then 
the following decision rule can be made to determine the 
occurrence of the fault:  

2

2

( ) ( )

( ) ( )
f

f

r k Q no fault

r k Q fault occurs
!

!

"

"

< #

$ #
                (13) 

where !  is the significance level. 2 ( )Q!"  is the thresh-
old that can be obtained using the table of 2!  distribu-
tion.  

Remark 3. It can be seen that ( )fr k  is generated at 
every time instant k , which means a fast rate fault detec-
tion scheme. Compared with the one proposed in [13], the 
method in this paper has advantages, such as simple struc-
ture, easy and intuitive to use, since it has no need to pro-
cess the noises correlation caused by lifting technique.  

IV. NUMERICAL SIMULATION 
In this section, a numerical example is given to shown 

the effectiveness of the proposed method. The considered 
system is borrowed from [13], as follows:  

0.37 0.16 1.00 1.06
, ,

0 0.14 0.43 0.43fA B B! " ! " ! "
= = =# $ # $ # $
% & % & % &

,
1 0
0 1

C ! "
= # $
% &

,  

0
0fD D ! "

= = # $
% &

, 
0.1 0
0 0.1

W ! "
= # $
% &

,
0.1 0
0 0.1

R ! "
= # $
% &

 

0

10 0
0 1

P ! "
= # $
% &

, [10 5]x = , 1 21, 2, 3T T T= = =  

Then we can get 6N = , 5Q =  and the system matri-
ces in (3). It is assumed in simulation that  ( ) 0u k = . 
Firstly, the state estimation result of multirate Kalman 
filtering algorithm (4)-(9) under the fault-free case is giv-
en in Fig.1. It can be seen that the estimation accuracy of 
State 1 is better than the one of State 2. This is mainly 
because that the sampling rate of Sensor 1 is faster than 
the one of Sensor 2. 

The fault detection scheme is verified next. Let ( )f t  be 
a constant fault with amplitude 0.5 occurring from 40 sec 
to 80 sec. Fig.2 shows the results of state estimation under 
faulty case. It can be seen that the performance of state 
estimation is poorer than the one under the fault-free case. 
Since 5Q = , by choosing 0.05! = and inquiring the ta-
ble of 2!  distribution, one can get the threshold 
2
0.25 (5) 11.071! = . The result of residual evaluation is giv-

en in Fig.3. It shows that the proposed method can detect 
the occurrence and disappearance of the fault effectively.  
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Figure 1.  State estimation results under fault-free case 
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Figure 2.  State estimation results under faulty case 
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Figure 3.  Residual evaluation 

V. NUMERICAL SIMULATION 
A multirate Kalman filtering based residual generation 

and evaluation scheme is developed for a class of sto-
chastic multirate sampled systems. The proposed scheme 
can detect fault quickly and avoid the complicated prob-
lems of causality constraint and noises correlation, since 
it does not use the lifting technique to handle multirate 
sampled systems. However, the proposed scheme may 
have a high computation cost since it needs to calculate 
the inverse of covariance matrix on line. A feasible way 
to reduce the on line computation cost is to design a 
steady multirate Kalman filter based fault detection 
method, which will be investigated in our future work.  
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