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Abstract—Advancements in remote sensing technology have 
led to improvements in the acquisition of land cover 
information. The extraction of accurate and timely 
knowledge about land cover from remote sensing imagery 
largely depends on the classification techniques used. 
Support vector machine has been receiving considerable 
attention as a promising method for classifying remote 
sensing imagery. However, the support vector machine 
learning process typically requires a large memory and 
significant computation time for treating a large sample set, 
in which some of the samples might be redundant and 
useless for the support vector machine model training. 
Therefore, higher-quality and fewer samples from the 
sample selection should be utilized for support vector 
machine-based remote sensing classification. A convex 
theory-based remote sensing sample selection algorithm for 
support vector machine classifiers is developed in this work. 
A Landsat-5 Thematic Mapper imagery acquired on August 
31, 2009 (orbit number 113/27) is adopted in our 
experiments. The study area's land cover/use was divided 
into five categories. Using the region of interest tool, we 
select samples from the image of the study area, with each 
category consisting of 1000 independent pixels. Results show 
that for most cases, our method can achieve higher 
classification accuracy than random sample selection 
method. 

Index Terms—Remote Sensing, Classification, Sample 
Selection,  SVM 

I. INTRODUCTION 
Land cover information has been identified as one of 

the crucial data components for many aspects of global 
change studies and environmental applications. Remote 
sensing technology can help obtain land cover information 
in an easy and timely manner. The remote sensing image 
classification process is illustrated in Figure 1: 

 
Figure 1.  The process of remote sensing image classification 

As shown in Figure 1, the remote sensing satellite collects 
earth surface images and transmits them to the data center. 
By specifying the paths and rows, users can download 
images from the specified location. Classification 
algorithm analyzes samples with selected pixels and 
obtains a remote sensing image classification result. 
Recently, Support Vector Machine (SVM) has been 
received increasing attention in the study of remote 
sensing classification [1, 2]. One limitation of SVM is, 
however, that its training stage takes up large memory and 
significant computation time, especially in the case of 
large sample sizes, where some samples may not even be 
useful for training [3]. Hence, sample selection (i.e. to 
select the most important samples) plays an important 
role. Plenty of work for sample selection has been done, 
including for example based on clustering methods [4,5], 
Mahalanobis distance [6], !-skeleton and Hausdorff-
distance [7,8], and the information theory [9,10]. 
Although much research progress has been achieved, 
problems still remain. For a given sample set in a 
particular application, the majority of existing studies have 
focused mainly on the acceleration of training speed by 
minimizing the size of the training sample set; no study 
has considered the selection of samples with a user 
specified percentage.  

The classification model obtained by SVM is a hyper-
plane that maximizes the width of the margin between the 
classes while minimizing the margin of errors [11,12]. 
Convex optimization theory was applied in the algorithm 
to train and find a hyper-plane [13]. This training process, 
in geometric interpretation, is equivalent to finding the 
nearest points among convex hulls in Hilbert spaces 
[14,15].The aforementioned research shows that the 
position of a sample relative to a convex hull (the 
geometric interpretation of SVM) can play an important 
role in classification, specifically for identifying the 
relationship between training samples and SVM 
classification results. A convex theory-based remote 
sensing sample selection algorithm (CTRSSSA) for 
support vector machine classifiers is developed in this 
work. A Landsat-5 Thematic Mapper imagery acquired on 
August 31, 2009 (orbit number 113/27) is adopted in our 
experiments. The study area's land cover/use was divided 
into five categories. Using the region of interest tool, we 
select samples from the image of the study area, with each 
category consisting of 1000 independent pixels. Results 
show that for most cases, our method can achieve higher 
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classification accuracy than random sample selection 
method. 

II. SUPPORT VECTOR MACHINE AND ITS GEOMETRIC 
INTERPRETATION 

Support vector machine (SVM) is a supervised 
classifier which aims to find hyper-planes that separate the 
dataset with a maximum margin [12]. Given a set of 
labeled data (x1, y1), ..., (xn, yn), where xi is a multi-
dimensional sample vector and }1,1{ !"iy  is the class 
label, the optimization problem associated to the 
algorithm of SVM can be written as follows [13]: 
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This is a convex quadratic programming equation B=" 
gives the hard margin case and B<" presents the soft 
margin case. K(xi, xj) is the kernel function and the 
dimension of kernel matrix K=K(xi, xj) is equal to the 
square of the number of training samples, thus more time 
and computer memory in SVM are needed to train a 
model when the number of samples increases. The process 
of finding hyper-plane in SVM training is equivalent to 
finding the nearest points among convex hulls or reduced 
convex hulls [14,15]. 

III. CONVEX THEORY AND SAMPLE SELECTION 
ALGORITHM 

A. Convex theory and distance in Hilbert space 
As mentioned above, the position of a sample in a 

convex can be used in determining the sample’s 
importance for SVM training. Here, convex theory is 
introduced to find a sample set’s convex hull, and 
based on which, any sample's distance from the convex 
center in the Hilbert space can be calculated. This 
distance can be a criterion for sample evaluation and 
selection. 

Definition 1: The set nRC !  is convex if [15] 
]1,0[,,,)1( !!"!#+ aCyxCyaax  (2) 

Proposition 1: Let C be a nonempty closed convex 
subset of Rn, and let z be a vector in Rn. There exists a 
unique vector that minimizes xz !  over Cx! , 
called the projection of z on C. Furthermore, a vector 
x* is the projection of z on C if and only if 

Cxxxxz !"#$$ ,0*)(*)'(   (3) 

Proposition 2: The distance of a point nRz!  to a 
convex set C in norm .  is defined as: 

}|inf{),( CxxzCzdist !"=   (4) 
We can find a unique projection vector in C to obtain a 
nonzero distance if Cz!  or equal to zero if nRz! . 

Definition 2: The closed convex hull (denoted as 
convS) of a nonempty set nRS !   is the intersection 
of all closed convex sets containing S [16]: 

}1, ...{
n
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i2211 !
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The norm or distance used by the formulas above is 
usually represented as a linear product. In general, 
complex real-world applications require more 
expressive hypothesis spaces than a linear product. 
Kernel representations offer an alternative solution by 
projecting the data into a high dimensional feature 
space to increase the computational power of SVM. A 
kernel K(x, z) and a feature map !  into a feature space 
F satisfying: 

>=< )(),(),( zxzxK !!    (6) 
For the linear separable problems, the kernel 

function can be expressed directly within the product of 
two vectors: zxzxK t !=),( ; for the linear 
inseparable problem, SVM adopts a non-linear kernel 
function (such as: RBF kernel) to map a linearly 
inseparable problem into a linearly separable one in 
Hilbert space. The distance between the two vectors in 
Hilbert space can be represented as follows [16]: 
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From equations (4), (5) and (7), the distance of 
vector z to a convex hull convS can be represented as a 
projection: 
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If we can find a group of i!  to make the projection 
distance between z and convS equal to zero, it means 
the vector z is inside the convS. If the projection is not 
equal to zero, it means vector z is outside the convS. 
This formula can be used as an important criterion to 
construct the convex hull. Center of mass of the convex 
set in Hilbert space can be represented as [16]: 
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The map (.)!  may be unknown in most of the 
kernel functions, so the center vector may cannot be 
obtained directly, but when the kernel function is given, 
the distance of a vector x to a set’s center can be 
obtained, based on formulae (7) and (9): 
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This formula can be used to evaluate the distance 
from a sample vector x to a set center in Hilbert space. 
Through formula (10) the distance of a vector x to a 
convex hull convS can be represented as 
disCenter(x,convS), which is a measure of importance 
to describe x’s position in a convex hull.  

B. Algorithms based on convex theory 
Basing on convex theory and the distance formula 

we propose the following four algorithms: 
(1) Is_in_convex algorithm: This algorithm tests 
whether or not a multi-dimensional vector x is in the 
convex decided by a sample set. 

Is_in_convex (Input: a multi-dimensional vector x, 
sample set S) 

Output: Boolean value (in or not in) 
Begin 
disProjection= disProjection (x,convS) by solving 

formula (8);  
 if  disProjection<>0 { return true; } 
else { return false; } 
End 

(2) Get_convex_hull algorithm: Given a sample set 
S={x1,x2,…,xn}  with n multi-dimensional vectors, the 
convex hull convS decided by a set S can then be 
obtained. 

Get_convex_hull (Input: A sample set S) 
Output: convex hull convS 
Begin 

},{ 21 xxconvSconvS != ;  },{ 21 xxSS != ;  
 foreach xi in S { 

),( convSxdisCenterdisi =  by formula (10);  
   if (not Is_in_convex (xk, 

convS)) { }{ kxconvSconvS != ; } 
}  
 return convS; 
End 

(3) Sample_evaluation algorithm: Given a multi-
dimensional sample x, the training value (i.e. the 
important degree for SVM training) of sample x can be 
obtained, based on convex hull convS. 

Sample_evaluation (Input: Sample x, convex hull 
convS ) 

Output: the training value  
Begin 
 if (not (Is_in_convex(x, convS)) { return 1; } 
 Find xmin and its distance dmin  by formula (7); 

 ),( convSxdisCenterdisCenterx = ; 

 ),( minmin convSxdisCenterdisCenterx = ; 

 return  disCenterx/(dmin+disCenterxmin); 
End 

(4) Based on above algorithms, the process of 
CTRSSSA is shown as follows 

CTRSSSA (Input: Sample set S, Selection 
percentage P) 

Output: Selected samples which have larger training 
values 

Begin 
 convS= Get_convex_hull(S); 
 V = Sample_evaluation(s,convS); 
 num=number of samples in S; 
 snum=num*P; 
 orderedS= S rearranged with descending 

evaluation value (V) order; 
return top snum samples in orderedS; 
End 

IV. EXPERIMENTS AND RESULTS 
Our study area covers the whole Honghe National 

Nature Reserve (HNNR) which is located in the Sanjiang 
Plain (the largest fresh water wetland area in the northeast 
region of China). A Landsat-5 Thematic Mapper imagery 
acquired on August 31, 2009 (orbit number 113/27), sub 
image size 700#859) and six spectral bands of the image 
were downloaded, this image including blue (Band1), 
green (Band 2), red (Band3), near-infrared (Band4), and 
two mid-infrared (Band5 and 7). The composite image 
(bands 4, 3, 2) of whole image and the study area can be 
seen in Figure 2: 

 

 
Figure 2.  Remote Sensing Image and study area (composite of bands 

4, 3, 2) 

Based on field experience and investigation at study 
area, the study area’s land cover/use categories include: 
Marsh Land (ML), Forestland (FL), Meadow (MD), 
Farmland (FD) and Water (WT), through Region Of 
Interest (ROI) tool, we select samples from study area 
image, samples with each category consisting of 1000 
independent pixels, and 1000 samples of each category are 
further split into two sample sets: 200 samples as the 
training sample set and 800 samples as the testing sample 
set. The proposed algorithms are implemented in 
MATLAB R2011b, and LIBSVM 3.1 with its MATLAB 
interface adopted as the SVM classifier [17]. To evaluate 
the effectiveness of CTRSSSA for the sample selection, 
the proposed method is compared with the random sample 
selection (RSS) method. 

In the experiment, selection percentage P varying from 
100% to 1% in step 1% is adopted. Here, P=100% 
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signifies that all of the samples within the training set are 
selected, whereas P=1% denotes that only 10 samples in 
total (with 2 samples in each category) are chosen. SVM 
classifier model (a Linear Kernel) is trained by each group 
of the selected samples, and the classification accuracy is 

then tested with the corresponding testing set. The 
classification accuracies of the two sample selection 
methods (CTRSSSA and RSS) are shown in Table 1:  
 

 
Table 1. Classification accuracy comparison between CTRSSSA method (the proposed method) and random sample selection (RSS) method  

S% C% R% S% C% R% S% C% R% S% C% R% 
100 91.88 91.9 75 91.93 88.85 50 91.88 89.4 25 90.13 88.8 
99 91.9 92.3 74 91.93 89.4 49 91.98 89.43 24 90.1 86.53 
98 91.9 91.68 73 91.95 89.68 48 91.95 89.73 23 90.05 82.48 
97 91.88 91.63 72 91.98 91.45 47 91.88 87.8 22 90 88.85 
96 91.85 92.05 71 91.98 90.13 46 91.98 90.48 21 89.8 85.58 
95 91.85 91.95 70 91.93 90.6 45 91.53 89.58 20 89.6 87.1 
94 91.85 91.88 69 92 92.15 44 91.43 87.75 19 89.65 86.1 
93 91.85 92.18 68 92.03 90.1 43 91.63 89.03 18 89.93 86 
92 91.78 91.98 67 92.05 91.15 42 91.25 88.7 17 90.23 76.48 
91 91.83 91.25 66 92.13 91.98 41 91.25 88.7 16 90.18 75.68 
90 91.83 91.68 65 92.13 90.58 40 91.38 89.85 15 89.68 86.95 
89 91.83 90.23 64 92.25 89.58 39 91.28 88.38 14 89.58 80.98 
88 91.85 89.75 63 92.13 90.78 38 91.28 88.1 13 89.68 85.4 
87 91.85 89.53 62 91.98 88.65 37 90.83 88.55 12 89.88 87.88 
86 91.85 91 61 92.08 89.63 36 90.75 90.6 11 89.7 83.75 
85 91.85 91.45 60 91.85 89.63 35 90.75 88.93 10 89.7 88.75 
84 91.9 88.95 59 91.8 90.83 34 90.93 90.08 9 89.63 84.78 
83 91.9 90.75 58 91.8 88.13 33 91 88.78 8 89.83 86.45 
82 91.95 89.48 57 91.83 89.6 32 90.98 84.23 7 87.95 70.7 
81 91.95 89.9 56 91.88 89.18 31 90.75 89.3 6 89.48 84.05 
80 91.93 91.28 55 91.88 89.88 30 90.88 89.23 5 88.93 80.58 
79 91.93 91.23 54 91.58 87.38 29 90.8 89.5 4 87.73 74.08 
78 91.95 91.88 53 91.85 89.8 28 90.55 85.25 3 86.45 87 
77 91.98 91.3 52 91.68 89.83 27 90.3 87.75 2 86.18 86.4 
76 91.98 89.83 51 91.65 89.8 26 90.18 87.73 1 81.25 71.4 

Nomenclature: selection percentage (S%), classification accuracy of CTRSSSA method (C%) and 
random sample selection method (R%). 

 
The classification accuracy and comparison of two 
methods are shown in figure 3, 4 and 5: 

 
Figure 3.  Classification accuracy of CTRSSSA method 

 
Figure 4.  Classification accuracy of RSS method  

 
Figure 5.  Classification accuracy of CTRSSSA minus that of RSS  

When the selection percentage P=100%, i.e. all of the 
training samples are selected, both CTRSSSA and RSS 
nearly attain the highest classification accuracy (92.3%). 
But along with the decrease in training samples, the 
classification accuracies of the two methods change in 
different patterns. For the CTRSSSA method, with a 
relatively stable and flat declining trend, the decline of the 
P of sample selection does not directly result in the 
decrease of classification accuracy (Fig 3). To be specific, 
compared with the classification accuracy of P=100%, an 
accuracy of 91.88% can still be achieved with a selection 
proportion P=55%; the classification is more than 90% 
accurate until P=22% (44 samples in each category); and 
86.18% accuracy can still be reached until P=2% (just 4 
samples in each category). The RSS method, however, a 
rapid classification accuracy decline is seen (the 
classification accuracy drops below 90% at P=88%). 
Moreover, the classification accuracy fluctuates 
remarkably and the smaller the selection percentage P, the 
more obvious the fluctuation (Fig 4). As we can see from 
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Fig 5 and Tab. 1, the CTRSSSA method can select more 
valuable training samples than RSS, and it achieves a 
higher classification accuracy in most cases (Fig 5), 
despite the fact that RSS’s classification accuracy is 
slightly higher (only 0.55%) than CTRSSSA in P=100, 

99, 96, 95, 94, 93, 92, 69, 3 and 2. Such an advantage 
becomes more and more notable with the decline of P, 
reaching the maximum (87.95%-70.7% = 17.25%) at 
P=7%. 

 

 
Figure 6.  Classification results: (a) 100% samples selected by CTBRSSSA; (b) 100% samples selected by RSS; (c) 7% samples selected by 

CTRSSSA; (d) 7% samples selected by RSS 

 
Fig. 6 shows the classification results of the two methods 
for P=100% and P=7% respectively. When P=100%, both 
CTRSSSA and RSS select all samples and obtain 
approximately the best classification results, as illustrated 
by Fig 6.a (CTRSSSA) and Fig 6.b (RSS) in which almost 
all categories are correctly distinguished. However, when 
P=7% (5 categories with 14 samples in each, the training 

set consisting of 70 samples in total), RSS is clearly 
inferior to CTRSSSA. The classification accuracy of RSS 
is just 70.7%, with many categories being misclassified 
including Meadow, Farmland and even Water (Fig. 6.d), 
whereas the classification accuracy of CTRSSSA reaches 
87%, with only partial Farmland being misclassified to 
Forestland and some Marsh to Meadow (Fig. 6.c). 

 

  
Figure 7.  Evaluation results obtained by CTBRSSSA for each category 

 
Fig. 7 shows the evaluation results and training value of 
each pixel on the remote sensing image by assigning the 
classified pixels with green or gray color. Therein, the 
dark green color represents the pixels’ position in the 
corresponding category’s convex hull, and the 
corresponding color depth from dark to light reflects the 
magnitude of training value (i.e., the darker the color, the 
larger the training value).The gray color represents the 
pixels outside of the corresponding convex hull, 
CTBRSSSA tend to select darker green pixels, which are 
easily misclassified in small sample sizes. Selecting 
darker green pixels can bring SVM classifier more 
accuracy when fewer samples are selected. 

V. CONCLUSION  
SVM is a widely used remote sensing image classifier 

that is data-dependent, and the quality of its training 
sample set greatly influences the classification result.  

In this paper, convex theory is first introduced into the 
selection process of the remote sensing training sample to 
quantitatively describe the relationship or importance 
between a sample and a convex hull quantitatively. Three 
algorithms, namely, Is_in_convex, Get_convex_hull, and 
Sample_evaluation, are designed. Is_in_convex tests 
whether or not a multi-dimensional vector x is in the 
convex. Get_convex_hull can obtain the convex hull from 
a sample set. Sample_evaluation algorithm can calculate a 
sample’s training value in the interval [0, 1]. A larger 

Forestland Marsh Meadow Water Farmland 

Sample training value Samples outside of the 
convex hull  

(a) (b) (c) (d) 

Water Marsh  Forestland Meadow Farmland 
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value corresponds to a more important training sample, 
where 1 refers to the most important sample and 0 the 
least important sample. With the help of the samples’ 
training value, CTRSSSA enables the selection of the 
most valuable samples for the SVM classifier, and it can 
maintain high classification accuracy, even when fewer 
samples are selected and utilized.  

Our experiments, where a group of samples from 100% 
to 1% are selected, demonstrate that in most cases, 
samples that are more valuable can be selected and higher 
classification accuracy can be achieved by CTRSSSA 
compared with RSS method.  

CTRSSSA is more stable than RSS, with a slower 
declining trend in classification accuracy along with the 
decrease in sample selection percentage. This statement is 
still true even when the number of samples is rather small. 
Furthermore, the fluctuation trend of CTRSSSA is less 
severe than that of RSS. With the help of CTRSSSA, 
users can select fewer and more valuable samples when 
classifying a remote sensing image and increase the SVM 
training speed to obtain better classification results. 
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