
PAPER
HYBRID METAHEURISTICS AND THEIR IMPLEMENTATIONS

Hybrid Metaheuristics and their Implementations

http://dx.doi.org/10.3991/ijoe.v11i7.4762

Caichang Ding , Wenxiu Peng1 and Weiming Wang2
1 School of Computer Science, Yangtze University, Jingzhou 434023, China

2 Teaching Supervision Office, Shenzhen Institute of Information Technology, Shenzhen 518172, China

Abstract—This paper studies with the design of hybrid
metaheuristics and their implementations. Hybrid
metaheuristics involve some major issues that could be
classified as design and implementation. Combining
different kinds of methods is a ordinary strategy to solve
optimization problems. As we have developed a unified view
of metaheuristics, that is based on their key search
components, one can say that designing a multi-objective
metaheuristic can be reduced to select the most suited
search components and combining them. Each of these
metaheuristics has been proven successful on a variety of
applications. Although there have been attempts to compare
their performance, the results are contradicting and
inconclusive. A difference is made between the design issues
used to introduce hybridization and implementation issues
that depend on the execution model of the algorithms.

Index Terms—hybrid metaheuristics, model, design,
implementation.

I. INTRODUCTION
In the past decades, a multitude of new search heuristics,

often called “metaheuristics” have been proposed, many
of them inspired by principles observed in nature.
Common representatives include evolutionary algorithms
(EAs) [1], ant colony optimization (ACO) [2], simulated
annealing [3], tabu search [4], or estimation of distribution
algorithms [5]. Each of these metaheuristics has been
proven successful on a variety of applications. Although
there have been attempts to compare their performance,
the results are contradicting and inconclusive. There does
not seem to be a superior candidate that should generally
be preferred over the others. Thus, it is not surprising that
recently, there has been a growing interest in hybridization
of these metaheuristics.

Hybridization of metaheuristics involves a few major
issues that may be classified as design and implementation.
The former category is concerned with the hybrid
algorithm itself, involving issues such as functionality and
architecture of the algorithm. The implementation
consideration includes the hardware platform,
programming, model, and environment on which the
algorithm is to be run. In this paper, a difference is made
between the design issues used to introduce hybridization
and implementation issues that depend on the execution
model of the algorithms.

II. DESIGN PRINCIPLES
Given a description of the different metaheuristics in

general form has many benefits. First, it creates a common
language, which allows researchers from different fields
to understand each other’s approaches easily. Second, it
moves the focus from the complete algorithms to the
components. Third, it provides the interfaces for the
different components to work together. Based on the
presented unified framework, it is almost straightforward
to combine different components from different
algorithmic paradigms: an algorithm designer can easily
select a combination of memorization features, choose a
suitable set of construction operators or create new ones
that make use of the combined set of selected
memorization features, and then decide how the memory
is updated with the newly generated information. The
framework allows for a lot of freedom: new solutions may
be constructed in different ways, using different
information from the memory, the solutions thus
constructed using one part of the memory may be used to
update another part of the memory, and so on.

The taxonomy will be kept as small as possible by
proceeding in a hierarchical way as long as possible, but
some choices of characteristics may be made independent
of previous design choices, and thus will be specified as a
set of descriptors from which a subset may be chosen. The
taxonomy proposed here is a combination of these two
schemes: hierarchical as long as possible to reduce the
total number of classes and flat when the descriptors of
the algorithms may be chosen in an arbitrary order.

III. HIERARCHICAL CLASSIFICATION
A discussion about the hierarchical portion then follows.

At the first level, one may distinguish between low-level
and high-level hybridizations. The low-level hybridization
addresses the functional composition of a single-
optimization method. In this hybrid class, a given function
of a metaheuristic is replaced by another metaheuristic. In
high-level hybrid algorithms, the different metaheuristics
are self-contained. There is no direct relationship to the
internal workings of a metaheuristic. In relay
hybridization, a set of metaheuristics is applied one after
another, each using the output of the previous as its input,
acting in a pipeline fashion. Teamwork hybridization
represents cooperative optimization models in which
many cooperating agents evolve in parallel; each agent
carries out a search in a solution space. Three classes are
derived from this hierarchical taxonomy.

iJOE ‒ Volume 11, Issue 7: "MESI 2014", 2015 25

PAPER
HYBRID METAHEURISTICS AND THEIR IMPLEMENTATIONS

A. LRH (low-level relay hybrid)
This class of hybrids represents algorithms in which a

given metaheuristic is embedded into a S-metaheuristic.
Few examples of hybrid metaheuristics belong to this
class.

B. LTH (low-level teamwork hybrid)
As mentioned in Chapter 1, two competing goals

govern the design of a metaheuristic: exploration and
exploitation. Exploration is needed to ensure that every
part of the space is searched enough to provide a reliable
estimate of the global optimum. Exploitation is important
since the refinement of the current solution will often
produce a better solution. P-metaheuristics (e.g.,
evolutionary algorithms, scatter search, particle swarm,
ant colonies (AC)) are powerful in the exploration of the
search space and weak in the exploitation of the solutions
found.

Therefore, most efficient P-metaheuristics have been
coupled with S-metaheuristics such as local search,
simulated annealing, and tabu search, which are powerful
optimization methods in terms of exploitation. The two
classes of algorithms have complementary strengths and
weaknesses. The S-metaheuristics will try to optimize
locally, while the P-metaheuristics will try to optimize
globally. In LTH hybrid, a metaheuristic is embedded into
a P-metaheuristics. This class of hybrid algorithms is very
popular and has been applied successfully to many
optimization problems. Most of the state-of-the-art P-
metaheuristics integrate into S-metaheuristics.

C. HRH (high-level relay hybrid)
In HRH hybrids, the self-contained metaheuristics are

executed in a sequence. For example, the initial solution
of a given S-metaheuristic may be generated by another
optimization algorithm. Indeed, the initial solution in S-
metaheuristics has a great impact on their performances. A
well-known combination scheme is to generate the initial
solution by greedy heuristics, which are in general of less
computing complexity than iterative heuristics.

This scheme may also be applied to P-metaheuristics,
but a randomized greedy heuristic must be applied to
generate a diverse population. Greedy heuristics are in
general deterministic algorithms and then they generate
always the same solution. On the other hand, the diversity
of the initial population has a great impact on the
performance of P-metaheuristics. This hybrid scheme is
carried out explicitly in the scatter search metaheuristic.

Combining P-metaheuristics with S-metaheuristic in the
HRH scheme is also largely applied. It is well known that
P-metaheuristics are not well suited for fine-tuning
structures, which are very close to optimal solutions.
Indeed, the strength of P-metaheuristics is in quickly
locating the high-performance regions of vast and
complex search spaces. Once those regions are located, it
may be useful to apply S-metaheuristics to the high-
performance structures evolved by the P-metaheuristics. A
fundamental practical remark is that after a certain amount
of time, the population is quite uniform and the fitness of
the population is no longer decreasing. The odds to
produce fitter individuals are very low. That is, the
process has fallen into a basin of attraction from which it
has a low probability to escape.

The exploitation of the already found basin of attraction
to find as efficiently as possible the optimal point in the
basin is recommended. It is experimentally clear that the
exploitation of the basin of attraction that has been found
may be more efficiently performed by another algorithm
than by a P-metaheuristics. Hence, it is much more
efficient to use a S-metaheuristic such as a hill-climbing
or tabu search. The HRH hybridization may use a greedy
heuristic to generate a good initial population for the P-
metaheuristics. At the end of a simulated annealing search,
it makes sense to apply local search on the best found
solution to ensure that it is a local optimum.

IV. COMBINING EVOLUTIONARY ALGORITHMS AND ANT
COLONY OPTIMIZATION

In this section, we propose a number of EA/ACO
hybrids, which attempt to combine the two memorization
schemes. Before that, however, let us briefly present the
pure EAs [1] and ACO [2] we built on. The application
considered is the traveling salesperson problem (TSP) [6].

Maybe the most straightforward combination of EAs
and ACO is to simply use both basic algorithms to
generate a portion of the new solutions each. More
specifically, in every cycle, we generate 50% of the k
new solutions on the basis of the pheromone matrix, while
the remaining 50% are generated using the edge
recombination operator. The complete set of k new
solutions is then used in the standard way to update the
pheromone matrix as well as the population.

Pheromone Completion (PC) crossover: This operator
at the same time uses pheromone matrix and population to
create a new individual. First, an individual is selected
from the population by rank-based selection. A random
connected part of that individual is then chosen, and this
partial permutation is completed using the standard ACO
construction operator, that is probabilistically according to
the pheromone matrix. After k individuals have been
created that way, the new individuals are used to update
the pheromone matrix as well as the population. Note that
this operator is somewhat similar to the approach
suggested by Punch. However, while we are proposing to
use separate memory structures for the population and the
pheromone matrix, they propose to use a population of
agents, each agent consisting of a solution and an
individual pheromone matrix. It is difficult to reason
whether using a global pheromone matrix or individual
pheromone matrices is more promising. A global
pheromone matrix collects more information and will,
therefore, perhaps be a better guide in particular in short
runs. Individual pheromone matrices, on the other hand,
allow for different solutions to be encoded simultaneously,
which may be more beneficial for long optimization runs,
when diversity is a major issue.

Pheromone-supported Edge Recombination (PsER)
crossover: It may happen that all the four edges used by
the edge recombination operator to select the next city
lead to cities that have already been visited. In these cases,
edge recombination selects a city randomly. The
pheromone-supported edge recombination operator
suggested here instead uses the probabilistic selection
based on the pheromone matrix. Again, the resulting
individual is subject to mutation, and after k individuals

26 http://www.i-joe.org

PAPER
HYBRID METAHEURISTICS AND THEIR IMPLEMENTATIONS

have been created, all of them are used to update both the
pheromone matrix as well as the population.

Mutating Ants (MutA): ACO maintains diversity by
choosing cities probabilistically in every step, and thus
does not seem to require additional mutations. However, a
simple change, like swapping two cities is very unlikely to
be produced by the probabilistic construction procedure.
Therefore, we here suggest to mutate the solutions created
by the ACO, adding a different kind of change.

Ant-based crossover (ABX): The idea of this hybrid is
to combine ACO’s sequential construction and elegant
integration of heuristic knowledge with the population-
based memory of EAs. ABX selects parents from the
population just as an ordinary EA. These parents are used
to construct a temporary pheromone matrix, by initializing
all pheromones to the same small value, and allowing the
parents to place additional pheromone on the solutions
(paths) they represent. New solutions are then constructed
in an ACO way, based on the temporary pheromone
matrix and possible heuristic knowledge. Only the best of
the generated solutions is returned as child and used to
update the population (memory). It is straightforward to
extend this idea by running an ACO on the temporary
pheromone matrix for a few iterations (allowing the
generated solutions to update the temporary pheromone
matrix before generating some more solutions). We
simply used the same parameter settings that had shown to
be successful in that paper: two parents are selected, and
the ACO is run on the temporary matrix for 5 iterations
with 12 ants each. Only the best solution found is returned
as a child.

V. EXPERIMENTAL RESULTS
Since ACO is primarily designed for permutation

problems, we chose a simple symmetric Euclidean TSP
with 100 cities to compare the different algorithms. Three
problem instances of varying difficulty have been created:
in problem P1, all cities are located equally spaced on a
unit circle. To generate problem instances P2 and P3, the
location of each of P1’s city has been moved in a random
direction by a distance of 0.2 or 0.5, respectively.
Independent of the problem instance, each algorithm was
allowed to create and evaluate 200,000 solutions.

As expected, heuristic domain knowledge is able to
drastically improve performance. The ACO with heuristic
knowledge as well as ABX generate equally good
(presumably optimal) results on all problem instances,
outperforming all methods without heuristic knowledge.
Note that besides the idea of ABX, incorporation of
domain knowledge into the EA is not as straightforward,
and we have not been able to produce similar results, for
example, by seeding the population with a heuristic. As
the results show, the problem instances examined are too
simple if heuristic knowledge is incorporated.

VI. CONCLUSIONS
The main drawback of hybridization is the introduction

of new parameters that define the hybrid scheme. The
setting of these parameters is nontrivial. A crucial
question that has to be addressed in the future is an aid for
the efficient design of hybrid metaheuristics in which the
automatic setting of parameters must be investigated.

Indeed, it will be interesting to guide the user to define the
suitable hybrid scheme to solve a given problem. It will
also be interesting to define adaptive cooperation
mechanisms that allow to select dynamically the
optimization methods according to convergence or other
criteria such as diversity. Some approaches such as hyper
heuristics have been proposed to deal with this problem.
These approaches are dedicated to choose the right
heuristic for the right operation at the right time during the
search. It must be noted that these hybrid approaches
operate in the heuristic space, as opposed to most
implementations of metaheuristics that operate in the
solution space. This principle is relatively new, although
the concept of optimizing heuristics is not a recent one.

For the algorithm designer, of course, it would be
invaluable to know which operators and memory schemes
are most promising depending on the application at hand.
However, that assumes a useful categorization of
problems, and is thus several steps in the future. Overall,
we hope that this paper helps to gain a general
understanding of different metaheuristics and of the way
they interact.

ACKNOWLEDGMENT
This work is supported by Scientific Research Projects
of Hubei Provincial Department Of Education. The
authors are also grateful to the four anonymous referees
for their insightful and constructive comments, which
greatly improved the quality of the paper.

REFERENCES
[1] J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Harbor, MI, 1975.
[2] M. Dorigo and L. M. Gambardella. Ant colony system: A

cooperative learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1: 53–66, 1997.
http://dx.doi.org/10.1109/4235.585892

[3] E. Aarts and J. Korst. Simulated Annealing and Boltzmann
Machines. John Wiley & Sons, New York, 1989.

[4] F. Glover. Tabu search. ORSA Journal of Computing, 1: 190–206,
1989. http://dx.doi.org/10.1287/ijoc.1.3.190

[5] P. Larrañaga and J.A. Lozano, Eds. Estimation of Distribution
Algorithms. Kluwer Academic, New York, 2002.
http://dx.doi.org/10.1007/978-1-4615-1539-5

[6] K. L. Hoffman, M. Padberg and G. Rinaldi. Traveling salesman
problem. In Encyclopedia of Operations Research and
Management Science, 1573-1578, Springer, 2013.
http://dx.doi.org/10.1007/978-1-4419-1153-7_1068

AUTHORS
Caichang Ding received the B.Sc. degree from the

School of Mechanical & Electronic Information, China
University of Geosciences, Wuhan, China, in 2003, the
M.Sc. degree from the School of Computer, Wuhan
University, Wuhan, China, in 2006, and the Ph.D. degree
at State Key Laboratory of Software Engineering, Wuhan
University, Wuhan, China, in 2014. He is currently a
lecturer in the School of Computer Science, Yangtze
University, Jingzhou, China. His main research interests
include computational learning theory, statistical learning,
basic theory of evolutionary computation and optimization
theory. (e-mail: ccding_2006@hotmail.com).

iJOE ‒ Volume 11, Issue 7: "MESI 2014", 2015 27

PAPER
HYBRID METAHEURISTICS AND THEIR IMPLEMENTATIONS

Wenxiu Peng received the B.Sc. and M.Sc. degrees
from Hubei University, Hubei, China, in 2003 and 2006.
She is currently a lecturer in the School of Computer
Science, Yangtze University, Jingzhou, China. Her main
research interests include computational learning theory,
statistical learning, basic theory of evolutionary
computation and optimization theory. (e-mail:
dianxin_1999@qq.com).

Weiming Wang received the B.Sc. degree from the
School of Machinery and Automation, Wuhan University
of Science & Technology, Wuhan, China, in 2003, and

the M.Sc. and Ph.D. degrees from the School of
Computer, Wuhan University, Wuhan, China, in 2005 and
2010, respectively. He is currently a lecturer at Teaching
Supervision Office, Shenzhen Institute of Information
Technology, Shenzhen, China, Wuhan. His main research
interests include computational learning theory, statistical
learning, basic theory of evolutionary computation and
optimization theory. (e-mail: 173676358@qq.com).

Submitted 25 May 2015. Published as resubmitted by the author 25
june 2015.

28 http://www.i-joe.org

