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Abstract—With the ongoing internationalization of virtual 
laboratories, the integration aspect becomes more 
important. The meanwhile commonly accepted ’glue’ for 
such legacy systems are service oriented architectures, based 
on standardized and accepted Web service standards. 

We present our concept of the ’experiment as a service’, 
where the idea of service-based architectures is applied to 
virtual remote laboratories. In our laboratory middleware, 
experiments are represented as stateful service 
implementations and jobs as logical service instances of 
these implementations. We discuss performance, reliability, 
security and monitoring issues in this approach, and show 
how the resulting infrastructure - the Distributed Control 
Lab - is applied in the European VetTrend project. 

Index Terms—remote laboratory, service-oriented 
architecture, VetTrend, stateful service instance, monitoring 
data model 

I. INTRODUCTION 
The Distributed Control Lab (DCL) is a virtual 

laboratory at the Hasso Plattner Institute in Potsdam, 
which enables the remote usage of experiments for 
teaching purposes. Authenticated users can submit control 
programs for an experiment by the help of different front-
ends, such as the Web interface, a development 
environment plug-in or a command-line interface. Each 
control program by a particular user is called a job, which 
is executed by a matching experiment controller that 
steers the according physical experiment hardware. 

The DCL infrastructure is responsible of distributing 
incoming jobs to available experiments. Multiple 
experiments of the same type, being able to handle the 
same kind of job, are called experiment types. The 

infrastructure supports both physical experiments and 
simulations for the same experiment type. Simulations are 
intended to help out in case of high load on experiments, 
e.g. before a student assignment deadline. Simulations can 
act as full replacement for the real experiment in most 
cases, since students submit most of their jobs for 
checking the correctness of their control application. This 
only demands mainly a compiler run for the control 
program in the particular runtime environment, but not a 
real execution of physical activities [4, 6].  

Beside the support for teaching activities, research in 
the DCL project covers the question of protecting the 
infrastructure against malicious code, which can 
potentially harm experiment hardware or execution nodes. 
It utilizes techniques such as automated source code 
analysis, run-time monitoring and dynamic adaptation for 
protecting the experiment infrastructure [5]. 

Within the DCL, several real-time control experiments 
have already been integrated. Fig. 1 gives an overview of 
some experiments connected to the DCL. Foucault’s 
Pendulum as an experiment imitates Leon Foucault’s 
famous experiment for measuring the earth rotation. An 
iron ball is used for the pendulum that can be accelerated 
using an electro-magnet connection to a control-PC via 
USB. Two orthogonal laser-based light barriers provide 
position information about the swinging ball. In this 
experiment, students have to implement an algorithm 
which evaluates the light barriers and switches the magnet 
on and off to keep the pendulum swinging. 

A second experiment is the Higher Striker, which 
works like a linear motor. Seven electro-magnets are 
placed around a tube of glass and can be used to accelerate 
an iron cylinder. Light barriers among the tube can be 
used to determine the position of the cylinder. The task of 
the experiment is to analyze the data stream sampled from 

Figure 1: The Distributed Control Lab 
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the light-barriers and generate a control data-stream for 
the magnets to move the cylinder to the top of the tube. 
The electro-magnets and the light barriers are sampled by 
a control-PC with a frequency of 38,4 KHz. We use this 
experiment to teach the programming of embedded real-
time control applications and students compare different 
real-time operating systems on the control-PC. 

Another experiment shown in Fig. 1 is a model of an 
assembly line controlled by a programmable logic 
controller (PLC). In addition to the control program, 
which has to be implemented in a PLC-language (IEC 
61131), monitoring and HMI components are 
implemented as Java and .NET programs, which be 
uploaded via our laboratory infrastructure. Students can 
use this experiment to experience heterogeneous 
embedded control systems. Further experiments also 
include the programming of Lego NXT robots and various 
simulators for our physical experiment installations. 

A. Motivation 
For several years, the DCL installation at HPI was 

based on a proprietary distributed .NET application. Both 
the experiment controllers and the job scheduler where 
realized with the .NET 1.1 framework and its proprietary 
remoting technology. Meanwhile, new experiment types 
require the experiment controllers to be implemented in 
Java and other languages that are either not or badly 
supported by the .NET remoting environment. This 
requirement motivated the switch to a service-oriented 
middleware, in order to integrate different execution 
platforms for the experiment controllers. 

During the utilization of the DCL infrastructure for the 
European Vet-Trend project, we also faced the new 
problem of integrating experiment installations from 
different organizations. Since heterogeneous technologies 
and execution platforms are in use in the field, a way 
needed to be found to integrate these systems. This 
requirement also motivated the usage of service 
architecture to couple the experiment installations. 

Another motivation to improve the existing DCL was 
the new separation of compile and execution step for 
single experiment runs. In the old architecture both steps 
were coupled, causing many users to wait for a 
compilation, while the physical experiment was in use by 
a long running job. We wanted to avoid this possible 
scalability bottleneck by using additional execution 
resources for compile services in a dynamic fashion. 

II. STATEFUL SERVICE CONCEPT 
In order to realize the DCL as service-based distributed 

environment, we applied results from our earlier Service 
Infrastructure research [8] to the domain of remote/virtual 
laboratories. Our stateful service approach extends the 
idea of stateless Web services with the explicit notion of 
service instances. Client applications (such as workflow 
engines in typical SOA environments) are enforced to 
perform an explicit service instantiation through a factory 
operation. The factory returns a reference to a logical 
service instance, which is described as WS-Addressing-
compliant XML document [2]. This document is then 
used by the client for subsequent service invocations, 
which are all automatically related to the initially created 
session between client and server. 

A logical service instance represents a stateful entity to 
the client, but does not necessarily need to be realized by 
only one physical service instance on a particular server. 
This slightly extends the idea of standard Web service 
frameworks, where services are referenced by an endpoint 
URI for a particular service instance on a particular 
machine. Instead, all clients communicate with a 
coordination layer that routes SOAP requests (specifically 
the SOAP body) to a matching execution host. All logical 
and physical instances relate to their according service 
implementation, which is realized as binary Web service 
component, such as a Java Servlet or a .NET Assembly. 
The kind of implementation for the particular service is 
transparent to the client in this case, and depends only on 
the available kind of execution hosts. 

In our stateful service concept, a logical service 
instance has query-able state and monitoring information, 
expressed by uniformly accessible attributes. Our 
implementation uses the specifications for the Web 
Services Resource Framework (WSRF) to allow 
interaction with stateful SOAP implementations. WSRF 
combines the WS-ResourceProperties (WS-RP) 
specification, which defines read, write and list operations 
for Web service attributes [1], and the WS-
ResourceLifetime (WS-RL) specification, which defines 
operations and WS-RP attributes for managing the 
lifetime of a service instance [7]. Since both the attribute 
access and the lifetime management is independent from 
the particular service implementation, clients can access 
and utilize this functionalities in all cases. The according 
query and update operations become automatically part of 
the service interface, as defined in the according 
standards. 

 

 
Figure 2: Service Infrastructure 

A first implementation of this infrastructure concept 
was realized and tested in the Adaptive Services Grid 
project [12]. Fig. 2 shows how the logical service 
instances for the client are managed by a coordination 
layer, which schedules and manages the incoming 
requests for the available set of physical service instances. 
New service implementations can be deployed at runtime, 
in which case the coordination layer chooses the right 
execution host for the binary (service placement). Service 
access is monitored by the request processing 
components, which supports the unified gathering of 
monitoring information for all service types. Service 
implementations can use a central storage facility to 
provide attribute values to the client or to save their own 
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state between invocations. The atomic services can either 
implement some functionality by them self or act as proxy 
for external functionality. 

A. Experiment as a service 
Based on our research results from the ASG project, we 

identified the tackled problems to be similar in the context 
of our new DCL infrastructure: 

• Due to the usage of standardized SOAP-based 
protocols, client and infrastructure 
implementation should be enabled to rely on 
different implementation platforms. 

• Stateful interaction with services should be made 
available to the client in an interoperable and 
standardized manner. 

• For scalability and maintainability reasons, new 
service implementations should be deployable 
during runtime. They should be able to utilize 
additional execution resources on demand, 
without effecting active requests and their 
clients. 

• Clients and services should be loosely coupled. 
Service access and state data access should 
therefore not relate to a particular execution 
host. 

• Open access to researchers, students and guest 
users at the same time demands a prioritization 
of specific requests according to the users’ 
identity. 

In order to check the Service Infrastructure concepts 
against a virtual laboratory application scenario, we 
compared the old DCL infrastructure concepts with the 
stateful service concepts of the ASG infrastructure. The 
resulting mapping is shown in the following table. 

 
TABLE 1: MAPPING OF DCL CONCEPTS ON STATEFUL SERVICES 
Distributed Control Lab Stateful Service Concept 

Experiment controller daemon Execution service implementation 
Experiment compiler daemon Compile service implementation 
Experiment simulation daemon Experiment service 

implementation 
Job for an experiment type Logical service instances of 

compiler and execution service 
Compiling a job Operation on a logical instance of 

the compiler service 
Running a job Operation on a logical instance of 

the execution service 
Job results Resource properties of the logical 

instances for the execution service 
List of all available 
experiments 

List of all usable execution 
services 

Status of users job Resource property of logical 
service instance 

Queue per physical experiment Queue per physical service 
instance 

 
Each DCL experiment controller, the software 

component to execute jobs on physical experiment 
hardware, can be represented by an experiment execution 
service (or control service) implementation. It provides the 
necessary interfaces to execute jobs and query job results.  

Since most of the experiments expect the source code 
of a control application as input, we also introduced the 
notion of a compile service implementation. It is specific 
to an experiment type and transforms source code to an 

executable binary, which can be directly passed to an 
execution service of a given experiment type.  

The decoupling of compilation and job execution 
improves the scalability of single experiment types. 
Execution services act as proxy for the physical hardware, 
and can therefore not be duplicated to multiple physical 
instances on multiple computers. In contrast, the compiler 
service acts as self-contained functional unit, and can be 
replicated over multiple execution hosts. 

As described in Table 1, every job for an experiment 
type can be represented by creating a logical instance for 
an execution service. The mapping between logical 
instances and physical instances is managed by the 
coordination layer (see figure 2). Each client therefore can 
operate its own logical instance (or session) for an 
experiment. The central request processing module queues 
the incoming requests for the available physical instances. 

The standardized support for service attributes allows a 
unified representation of job results. Each physical 
instance can store job results from the experiment run as 
attribute values. The infrastructure relates such saved 
attribute values to the logical instance triggering the 
operation, and stores the value and related logical service 
instance identifier in a central database. If the client now 
queries its logical instance for some current attribute 
value, the coordination layer can provide the latest data 
made available by the execution service or the compile 
service. This decouples write and read operations for 
experiment data, and also decouples clients from 
particular execution hosts for compilation or experiment 
services.  

 

 

 
Figure 3 shows an example workflow for the service-

based DCL infrastructure. After the experiment service 
implementation has been deployed and configured (step 
1), the user creates a logical service instance at the 
Coordination Layer (step 2). In the next step (3) the 
experiment is executed by invoking the described service 
operations. The first time an experiment is used, the 
Coordination Layer dynamically deploys a physical 
service instance in an appropriate execution host. 
Afterwards the user code is potentially compiled and 
finally executed (step 3.1 and 3.2). In the last step the user 
can acquire experiment results via resource properties of 
the according logical service instance. 

B. Instance destruction 
A special activity to be considered by the infrastructure 

is the concurrent usage and destruction of a logical service 

Figure 3: Workflow in the Distributed Control Lab 
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instance. The typical case is the cancellation of a long-
running experiment job by destroying the according 
logical instance. With SOAP as basic access protocol, the 
service consumer will send a destruction request message 
to the infrastructure, while the response message to the 
original service request is still pending. 

With the destruction request in place, the infrastructure 
coordination layer now has to decide how the still running 
request is handled. This is mainly a decision based on the 
nature of the according service. One typical approach in 
HTTP-based Web service systems would be the 
cancellation of the transport layer connection from 
infrastructure to atomic service, which has the 
disadvantage of an exception in the service 
implementation.  

In the case of the DCL service infrastructure, physical 
service implementations therefore describe in their meta-
data which kind of cancellation they support. Simulation 
services support the silent invalidation of the logical 
instance on a destruction request. In this case, the service 
call is completed by the physical instance and the returned 
value is discarded. Execution services demand the explicit 
retrieval of a cancellation call, in order to cancel the 
experiment run on the connected hardware. They will 
therefore not return a response message for the pending 
call. Since the destruction of logical instances has no 
influence on the local reference in the service consumer, it 
might happen that requests are still performed outside of 
the logical instances lifetime. This results in an error 
response stating the non-existence of the logical instance. 

It must be noted that service implementations shall not 
be able to influence the life time of their logical instances, 
in order to keep the strict separation of logical instance 
coordination and physical execution layer. With such an 
approach, all life time management remains on the level 
of logical instances, enabling the flexible assignment of 
resources. 

In the following section, we will now describe the 
implementation of the updated DCL based on the stateful 
service concept.  

III. IMPLEMENTATION DETAILS 
In the current implementation of the DCL 

infrastructure, new available experiments must be 
announced by providing an implementation of execution 
and compile service for a particular experiment type. The 
experiment provider uploads a service package as binary 
file, containing the service implementation and a 
deployment descriptor. The deployment descriptor 
contains meta-data such as scheduling configurations, a 
description of the experiment for the frontend display, 
properties of the service and the experiment type that is 
used to group compile and execution services. During the 
registration process, the WSDL of the services is 
augmented with the necessary operations defined by the 
WSRF standards for property and life-time management.  

A. Experiment usage 
To use an experiment, a logical service instance for 

both compile and execution service has to be created by 
the front-end. The created instances allow the usage of an 
experiment by invoking the standardized 
ExecuteExperiment or CompileExperiment 
method on the logical instance. The DCL coordination 

layer ensures that a working physical service instance 
exists for any logical instances being successfully created. 
If necessary, it places a new service by loading the 
according service package to a remote host. Results of the 
experiment runs are centrally stored and can be accessed 
via the resource properties of the logical service instance. 
Experiment hardware cannot be shared among multiple 
jobs. Therefore, the coordination layer has to support the 
serialization of invocations for physical service instances. 

Listing 1 shows a sample implementation of an 
execution service for the Lego NXT robot experiment. 
Users can write control programs for robot movement, and 
submit it to the infrastructure in order to see the resulting 
physical activities of the experiment hardware. In the 
implementation, the class NxtExecuteService 
derives from the WebService base class, indicating the 
implementation of a new Web Service. Each execution 
service must implement the ExecuteExperiment 
method, which receives the program image to be executed 
as binary array. The method is called by the coordination 
layer, based on the next request to be handled from the 
queue of pending logical instance calls. 

 

 
Listing 1: Experiment implementation 

As first step in the example implementation, a camera 
recording is started to save a video of the robot’s 
movements during the job execution. Then the binary 
program image is transferred to the NXT via a Bluetooth 
connection. After the execution of the job, which is 
indicated over the Bluetooth connection, results of the 
experiments are saved in the infrastructure. The DCL 
implementation automatically determines the related 
logical instance and can therefore provide a generic 
attribute access library for experiment services. This 
simplifies the programming model, since the integrators of 
new experiments don’t need to consider the logical 
instance handling of the coordination layer. 

Listing 2 shows a shortened example for the 
implementation of a client using an experiment and 
fetching the results afterwards. In the listing, logical 
instances for compile and execution service are created 
first. Each service instance is represented by an endpoint 
reference object, in accordance to the WSRF specification. 
The ExecuteExperiment method returns after the 
finalization of the control program, or after the maximum 
time allowed for execution has been expired. The result of 
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the experiment run can be acquired by accessing the 
according service attributes with the WS-RP operations. 

All DCL experiments are currently accessible over the 
Internet. Therefore it must be ensured that only authorized 
users can access the experiments. The DCL therefore 
requires authentication data to be present in a SOAP 
request as described by the WS-Security Username Token 
Profile [3]. Furthermore, clients and experiment 
developers are free to use other standardized mechanisms 
to protect the message body. 

 

 
Listing 2: Experiment client 

B. Scheduling 
In order to schedule Web service requests in our 

infrastructure according to an assigned priority, two 
problems needed to be solved. First, the priority decision 
value that is encoded in the SOAP message needs to be 
accessed. As most Web service stacks abstract from the 
communication handling, the access to priorities is usually 
not possible before the request processing starts. This 
prevents a re-ordering of incoming requests according to 
some priority setting. The problem was solved by 
intercepting the SOAP processing in the Web service 
stack, and analyzing the incoming raw XML data in a 
custom preprocessing handler. This step also covers the 
reaction on WSRF-compliant request messages, for 
example for the attribute access, which is not covered by 
the service implementation itself. The solution provides 
fast access to the priority values and allows the correct 
routing of the result messages. 

Some of the experiment hardware requires a recovery 
phase between successive jobs. This is implemented by 
according queuing strategies in the coordination layer 
implementation. 

Using our central scheduling approach, we are able to 
tolerate crash-faults, by having execution hosts installed 
on redundant computers. Before executing a job, the 
coordination layer checks whether the chosen physical 
service instance is still operational. If this is not the case, 
an existing physical service instance on another host is 
used. If no more physical instances are available, the 
coordination layer can also decide to deploy the service 
implementations to another empty machine. The 
infrastructure supports the addition of new execution hosts 
at runtime, which allows the immediate reaction on 
failures without down time for the whole infrastructure. 

In a future step, we plan to delegate jobs to multiple 
physical service instances in parallel and choose a result 

according to a voting mechanism. This mechanism is 
independent from the location of the execution host, and 
can therefore support fail-over scenarios between multiple 
interconnected virtual labs. For the sake of extensibility, 
the coordination layer itself is not aware of the 
deployment format of a service package. At the moment, 
our infrastructure contains two different types of service 
containers – one type to process .NET Web services, and 
one type for JAX-WS Web services. Since all incoming 
requests contain the information about the logical service 
instance, successive jobs need not to be processed by the 
same physical instance. This supports both load balancing 
and fault tolerance for a particular experiment type, under 
the assumption of reliable central data storage. 

C. Performance data model 
In order to rely the dynamic resource usage 

mechanisms on according runtime information, we 
developed a generic data model for performance 
measurements in service infrastructures. The obtained data 
is used to identify performance bottlenecks with 
simulation and compilation services in the processing of 
user requests. It also supports the dynamic scheduling of 
requests to different physical instances. 

Our data model is a combination of existing 
specifications from different standards, especially  
[9-11]. It focuses only on properties measurable on the 
level of the service infrastructure itself. Other typical 
performance counters from hardware and operating 
systems, such as CPU load or process working set, are not 
comparable between heterogeneous execution hosts. 
Therefore, they cannot be utilized for an overall ranking 
and analysis of services in the infrastructure and were 
intentionally omitted. 

The model distinguishes between performance values 
per request, per logical instance and per service 
implementation. Every logical instance allows the retrieval 
of performance values of all these classes through the WS-
RP operations (see section II). The validity scope is 
expressed by the namespace of the QName   (e.g. 
{'http://dcl/perf/callscope','state'}).  

One example are implementation-scope values, which 
are retrievable through all logical instances of this 
particular implementation.  

Performance values that are valid per request are either 
measured in the coordination layer or in the runtime 
environment for the physical instances: 

• In the coordination layer 
o Request / response retrieval time 
o Request / response forwarding time 
o Response time (duration) 
o Request status 

 Received 
 Processed 
 Finished 
 Failed 

o Request / response size 
• In the service container 

o Request processing start / end 
o Utilized CPU time 
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A single request has the status ‚received’ if the 
coordination layer received the request message 
completely, but did not forwarded the request to a 
physical instance so far. The request is then in the status 
‘processed’ as long as the physical instance did not send a 
response message. The state ‘finished’ expresses the fact 
that the processing is completed. Requests with the status 
‘failed’ can occur if the service infrastructure had no 
physical instance available, or if the response message 
was identified as SOAP fault message.  

The state change to ‘finished’ or ‘failed’ is triggered by 
a generic SOAP interceptor in the service container, which 
also reports the container-side performance values. The 
state therefore does not imply any information about the 
possible availability of experiment results, since this is an 
implementation-specific issue. 

The request processing time, as well as the utilized 
CPU time is relevant for the dynamic usage of physical 
instances of the same implementation on different 
machines. The current implementation of our concept 
obtains these values also in the SOAP interceptor. 

In the second class of monitoring parameters, all values 
are available per logical instance. As a specific 
characteristic, these values are always also available per 
implementation, basically as an aggregated version. All 
the values collected in the coordination layer are: 

• Number of successful requests 
• Number of failed requests 
• Successability rate 
• Request throughput 
• Average / maximum response time 
• Maximum request / response size 
• Processing time 
• Life start / end 

The successability rate expresses the relation between 
the number of successfully processed requests (status 
‘finished’) and the overall number of requests, similar to 
[10].  

It must be noted that the concept of accessibility from 
this standard ([10]) is not used, since it would demand 
some message retrieval acknowledgements from the 
service consumer. This shows again the focus on 
technology-independent performance metrics in our 
model. 

 For the computation of the request throughput, we 
divide the number of all successful requests by the life 
time of the instance / implementation. The average 
response time per implementation is obtained accordingly.  

The monitoring values in the third class are only 
available per implementation: 

• Status  
o Available 

 Busy 
 Free 

o Not available 
 Stopped 
 Failed 

• Overall duration of available status (up time) 
• Overall duration of failed status (outage time) 

• Overall duration of not available status  
(down time) 

• Availability 
• Reliability 
• Number of physical / logical instances 

A ‘busy’ implementation is in general available by its 
logical instances, but has some pending requests at the 
time of querying. A ‘free’ implementation has no pending 
requests. This distinguishing can be used for choosing 
between different implementations before logical instance 
creation, and is based on the assumption that state changes 
are comparatively infrequent.  

The non-availability of an implementation, even though 
the logical instances are still provided, can be transient 
(reconfiguration, failures) or permanent (de-installation). 
In both cases, logical instances remain accessible on the 
coordination layer, to provide an endpoint for late result or 
performance data retrieval.  

Up time, outage time and down time are updated on 
every status change of the implementation. The 
availability value describes the portion of time where the 
implementation was ‘available’. The reliability value is 
computed according to [11], based on the mean time 
between failures for the implementation. 

The overall monitoring model was implemented as part 
of the updated DCL infrastructure. SOAP interceptors on 
the execution hosts report the current values to the 
coordination layer by asynchronous messaging protocols. 
The coordination layer aggregates the data sets and offers 
them of the logical instances to interested clients.  

IV. OPERATIONAL EXPERIENCES 
Within the VET-Trend project, we started a first pilot 

effort for testing experiment integration with the 
Technical University Darmstadt and at the Hasso Plattner 
Institute. TU Darmstadt is operating a remote laboratory 
for reconfigurable hardware modules, which can be 
programmed and tested by according tools. In order to 
perform the integration, TU Darmstadt provides an 
experiment and compilation service interface for their 
experiments, which is called by our infrastructure.  

Practical tests showed that the usage of SOAP 
messaging to query information about experiment runs is 
the most time consuming task in the new infrastructure. 
Since most of the job-related information remains constant 
during their life-time, we integrated several caches in parts 
of the infrastructure. With this technique, the number of 
fully processed service invocations at the coordination 
layer was dramatically reduced. 

From a technological perspective, we successfully 
interconnected an ASP.NET frontend with the 
coordination layer written in Java 6. Current execution 
host are programmed both in Java and .NET, and initial 
experiments already showed the possibility also for other 
platforms. In general, the usage of mature Web service 
standards and the consideration of WS-I regulations has 
shown to be helpful in order to achieve true 
interoperability in a heterogeneous middleware 
environment. 
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V. RELATED WORK 
Many universities around the world provide virtual and 

remote laboratories with a variety of experiments. 
Nevertheless only a few of these labs rely on Web service 
communication between users and experiments. In 
contrast to our approach, which uses an extended Web 
service infrastructure with integrated support for stateful 
service, load balancing and fault tolerance these features 
cannot be found in most other approaches.  

The MIT iLab project [14][15] provides an open source 
framework with common functionality for the operation of 
virtual/remote laboratories. iLab relies on a three-tier Web 
architecture including client applications, intermediate 
service brokers and lab servers. Users do not communicate 
with experiments directly, but use a Web service interface 
provided by service brokers. A service broker is a generic 
actor provided by iLab, which synchronizes access to lab 
servers and also handles authorization and authentication 
of users. The service broker forwards experiments usages 
from users with a computed trust level to the lab servers, 
which are totally decoupled from user management and 
synchronization details. iLab uses Web services to 
interconnect experiments residing in on different cam-
puses.  

IsiLab [13] is a web-based remote laboratory for 
measurement experiments in electronics. Behind a portal 
tier, which generates web pages for users, a workflow 
manager coordinates Web service invocations within the 
engine tier and into the resource tier. In the resource tier, 
measurement instruments can be accessed via Web 
services. Their usage is synchronized by an additional 
instrument reservation Web service. An experiment 
workflow ensures that all necessary resources are reserved 
during an experiment execution. Together with the 
workflow, the WS-execution engine service manages user 
working sessions. IsiLab has much in common with our 
approach and besides iLab it is one of the most advanced 
projects using Web services for remote labs. IsiLab 
currently is restricted to a web page. Our approach has 
advantages in the flexibility for end-users. It offers a very 
convenient way to access experiments directly via the 
offered stateful services. This allows for an easy 
integration of experiment access into standard 
development tools. 

VI. CONCLUSION 
The utilization of service-oriented software 

architectures for remote/virtual laboratories is a promising 
approach for solving the typical problems of cross-
organizational access, scalable behavior and dynamic 
resource usage. We presented our concept of an 
’experiment as a service’, were physical service instances 
provide access to the experiment hardware and logical 
service instances represent according user jobs. The 
application of mature Web service technologies allows 
establishing a transnational virtual laboratory 
environment, which integrates experiments and users from 
different sites all over Europe. First steps toward such an 
infrastructure already have been taken. 

We have successfully used our laboratory infrastructure 
in courses on embedded systems, held at the Hasso 
Plattner Institute and the Blekinge Institute of Technology 
in Sweden. The integration of new experiments from other 
organizations has just started.  

Future work we will concentrate on the integration of 
further experiments and on the improvement of our 
service-oriented laboratory middleware according to user 
and integrator feedback. Beside the batch mode 
programming of hardware modules, we also identified the 
need for an interactive mode, which is required to perform 
test cycles at the downloaded hardware configuration. The 
interactive mode will be realized as stream-based 
interaction with an experiment during the execution of a 
job. 
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