
TOWARDS A DISTRIBUTED ARCHITECTURE FOR REMOTE LABORATORIES

Towards a Distributed Architecture for Remote
Laboratories

J. García-Zubia1, P. Orduña2 , I. Angulo1, J. Irurzun1 and U. Hernández1

1 University of Deusto, Bilbao, Spain
2 Fundación Tecnológico Deusto, Bilbao, Spain

Abstract—Traditionally, Remote Laboratories have been
focused on specific solutions for specific problems. We can
find a wide range of Remote Laboratories in the literature
[1], assisting very different types of subjects (electronics,
robotics, optics, fluids mechanics...), but commonly bound to
a restricted set of requirements. Because of this, little
attention has been paid on working on a scalable,
maintainable, secure, open architecture that addresses the
requirements of a wide set of experiments, and that could be
open enough to support or adapt itself to new experiments.
In this paper, we describe several aspects that might be
taken into account when designing a Remote Laboratory
architecture, resulted from the iterative development of our
Remote Laboratory.

Index Terms—WebLab,Remote-Lab,SOA

I. INTRODUCTION
A Remote Laboratory is composed of a client-side

software and a server-side software.
The decisions taken for choosing among different

client-side technologies (AJAX, simple HTML, Adobe
Flash, Java Applets, Microsoft Silverlight, etc.) are critical
[2][3] to allow or not the final users to use the Remote
Laboratory on different browsers and different operating
systems, as they are critical to enable certain degree of
security, accessibility and user interface capabilities (3D,
video, sound). These decisions will have an impact on the
Remote Laboratory architecture [2] because depending on
the client technology used, the server side will be able to
interact with the client using different types of protocols
(SOAP, REST, JSON, RMI, sockets, etc.).

However, other required factors (i.e. scalability,
maintainability of the system, most of the security aspects,
quality of service, etc.) of Remote Laboratories are bound
to the server design and independent of the client side.

In this paper we illustrate the different requirements of
a Remote Laboratory and the approach taken by our
Remote Laboratory (WebLab-Deusto) to match these
requirements.

II. DEFINING REQUIREMENTS OF REMOTE
LABORATORIES

Examining the requirements of Remote Laboratories,
there are important aspects that have to be taken into
account when designing an architecture for Remote
Laboratories. We have summarized these aspects in a set
of questions that the designer of a Remote Laboratory

architecture might consider, and grouped them into the
following six categories:

A. Dependence on the type of experiment
○ How dependent on the nature of the experiment is the

architecture?
○ Can experiments be shared with different users at the

same time by time-division multiplexing? Most
experiments can not be multiplexed (those that have some
kind of state -a program in a device, a robot in a position,
etc.-), but there other types of experiments that can be
multiplexed (those only using digital electronics [3]). Can
this technique be used in some experiments in the
architecture?
○ Can't the experiments be shared and thus the users

need time-based sessions? Does the Remote Laboratory
assume a magnitude of time for each session
(milliseconds, seconds, minutes, hours...)? Does the
experiment have a scheduling system based on this
magnitude (i.e. no waiting in the case of milliseconds,
waiting in a queue for seconds or minutes, and having to
schedule it for hours and days)?
○ How generic are the commands used to interact with

the device? Does the Remote Laboratory assume a some
types of experiments which receives certain type of
information? Does the Remote Laboratory assume a size
or frequency for these commands?
○ Does the Remote Laboratory use a video stream (i.e.

from a webcam)? Does the Remote Laboratory assume a
video quality for it?

B. Scalability
○ How many users does the architecture support in the

highest peaks? How affordable is to increase that number?
○ Does the Remote Laboratory scale vertically (adding

more resources -memory, CPUs- to a single node, the
system supports proportionally more connections)?
○ Does the Remote Laboratory scale horizontally

(adding more nodes, the system supports proportionally
more connections)? Can the application be distributed
along those different nodes? It is easier to add more nodes
than to add more resources to a single node, but it is also
usually more complex to implement a Remote Laboratory
that scales horizontally that one which does not.

C. Maintainability
○ Does the architecture assume a single schema for the

integration of the Remote Laboratory?

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 11

TOWARDS A DISTRIBUTED ARCHITECTURE FOR REMOTE LABORATORIES

○ Can it be integrated in the IT Services of different
universities? Can it use different schemas for this
integration (supporting SSPI, LDAP, different database
providers, etc.)? Different entities tend to use different
solutions for storing credentials and personal information
of the users. Providing a pluggable authentication system
is useful to integrate the Remote Laboratory in different
schemas.
○ Does it support an advanced user management -

involving multiple types of users with different privileges:
users, professors, laboratories administrators, system
administrator, etc.-? As the Remote Laboratory user and
experiment base grows up, the administration tasks gets
more complex. Not supporting different roles centralizes
these tasks into a single role -administrator-, consuming
time doing tasks that could be done by other maintainers
that can not have so many privileges.

For instance, a professor who owns an experiment
should be able to check the logs of the use of that
experiment, but not the logs of other experiments. If there
is no such role, the professor will need to contact the
administrator to get those logs in a manual way so no
automatic response is obtained, and if there are many
experiments the administrator will be wasting too much
time in maintainability tasks that could be automated.
However, all those professors should not have
administrator privileges, and although only certain
privileges could be provided to each professor user, the
creation of roles and groups can speed up the
maintainability of the system.
○ Does it support an advanced log management? Can

professors easily know how much do their students use the
experiments they handle?

D. Security
○ Does the architecture take into consideration security

in its design? It is important to take into account security
issues during the whole process of software development,
including its design. A vulnerable design can become
difficult to secure in the latter stages of the development.
○ Does the Remote Laboratory avoid security flaws in

the different modules of the system? Does the Remote
Laboratory support secure communication protocols?
Does the Remote Laboratory count with systems to avoid
code injection (such as SQL/LDAP/XPath injection)?
Does the Remote Laboratory store the passwords in a
secure way?
○ Have security policies been established in the Remote

Laboratory development?

E. Dependence on the protocol
○ Does the architecture assume a certain topology and

bases the protocol decisions on that topology?
○ Does the Remote Laboratory assume that the

different experiments and the application servers are in the
same computer/room/building/city?
○ Does the Remote Laboratory support multiple

protocols for different types of experiments, depending on
the requirements of these protocols? For instance, an
optimized binary protocol is more suitable for experiments
which require real time feedback from the device, while it
might have problems when dealing with firewalls or
proxies. The decision depends on if real time feedback
really is such a requirement.

○ Does the Remote Laboratory support multiple
protocols depending on the security needed given the
topology (using IPC -i.e. UNIX sockets-, or a dedicated
network, a university private network, a public network)?
Are authentication and encryption considered depending
on the type of network?

F. SOA-compliant
○ Does the architecture match the Service Oriented

Architecture?
○ Is the Remote Laboratory deployed as a service using

a well known transport that can be consumed by other
applications such as SOAP, REST or JSON? Or does it
only support its own client (i.e. it only supports a web
client)?
○ Can other services be built on top of the Remote

Laboratory using a public interface?

III. WEBLAB-DEUSTO ARCHITECTURE
The software architecture of our Remote Laboratory

has taken into account the previously explained.

A. Software architecture evolution
WebLab-Deusto had previously gone through two main

iterations [4]:
 Version 1.0: The first approach of WebLab-Deusto

that students actually used. The client was developed as a
Jython applet (the user had to install the Java Runtime
Environment in order to use the Remote Laboratory),
while the server was a single Python application that
could manage a single experiment. The communication
between client and server was a proprietary socket-based
protocol; this way the user could not be behind a HTTP
proxy server and problems would arise if the user dealt
with firewalls.

 Version 2.0: The second approach of WebLab-Deusto
improved the client side of the project. The client side
was rewritten using AJAX, and in the server side a new
layer was written on top of the previous server so it
managed SOAP messages instead of low level socket
based messages. The user now could use the experiments
even behind a HTTP proxy server and a firewall.
Furthermore, since no software installation was required
(since the client was purely written in AJAX), the user
could use the Remote Laboratory from certain mobile
devices [5]. Other enhancements, such as a cross-
platform version of the laboratory, auxiliar applications to
manage the Remote Laboratory, etc. were achieved in
this branch through the different 2.x versions.

B. WebLab-Deusto 3.0 Requirements
As a result of the success of these previous iterations,

new requirements came up and required a new Remote
Laboratory architecture.

In terms of maintainability, WebLab-Deusto 2.0 still
managed a single experiment. This way, in order to
provide multiple experiments to the students it was
necessary to deploy multiple instances of the Remote
Laboratory, and maintain them independently.

In terms of flexibility, the design of WebLab-Deusto
2.0 was tied to the requirements of WebLab-Deusto 1.0,
with only two different experiments. But future

12 http://www.i-joe.org

TOWARDS A DISTRIBUTED ARCHITECTURE FOR REMOTE LABORATORIES

deployment plans included a wide range of a dozen
different experiments.

The number of students accessing the laboratory has
also increased, so scalability had to be taken in the new
design. Since the hardware was distributed along different
laboratories of the Faculty of Engineering, the Remote
Laboratory needs to support a complex deployment that
will deal with heterogeneous networks that might include
elements such as HTTP proxies, firewalls and untrusted
networks between the different servers.

C. WebLab-Deusto 3.0 Architecture
In order to match the requirements explained above, the

WebLab-Deusto 3.0 is based on a distributed architecture
as shown in Fig.1.

Figure 1. WebLab 3.0 Architecture

1) Logical architecture
In this architecture, the clients connect to servers

located in a server farm, maintained by the IT services of
the University. A multitier architecture is applied, where
the presentation tier is found in the client side, and the
logic and database tiers are physically placed in this server
farm.

The project currently supports MySQL 5 [6] for the
database tier, Python is used in the logic tier, and an
AJAX script (written with the Google Web Toolkit
framework [7]) is used in the presentation tier. The servers
in the logic tier will communicate with the authentication
services found in other tier, which can currently be
implemented using MySQL or LDAP.

Since the hardware is placed in laboratories that can be
found in different buildings, the communication between
the logic servers and the servers found in the laboratories
should be secured, and the number of network addresses
reserved by these servers should be minimized. On the
other hand, in order to maximize the number of hardware
experiments, it is necessary to reduce the cost of the
devices that directly interact with the hardware. These
devices might be micro servers, that will have direct
access to the hardware but they will have limited
resources.

In order to combine these cheap devices with the
required resources per laboratory (secure communication
between the logic server and the laboratory, minimized
number of network addresses), we introduce a new tier
that hides the micro servers to the logic servers, acting as
proxies. This way, the communication between the logic
server and these proxies can be secured, and each proxy
will handle a number of micro servers that will directly
interact with the hardware. The information

communicated between the logic server and the proxy
server will not contain sensitive information related to the
users that are sending the information, but the information
must be at least signed to avoid attackers using directly
these proxy servers to interact with the hardware without
credentials to do so.
2) Communications in the WebLab 3.0

The problem with this architecture is that, although it
matches the logic requirements, it demands many tiers.
When the client sends a message to a device, it must be
sent securely to the logic servers, that will redirect the
message securely to a proxy in a laboratory that will
redirect the message to a microserver that will redirect the
message to the hardware. While this is fine in big
deployments, depending on the experiment it can be
optimized. If the hardware experiment is controlled
though an application run in a computer, then the
microserver tier should not exist. If this experiment is
found in the same network where the logic servers is, the
proxies tier should not exist.

Furthermore, depending on the requirements of the
experiments and on the configuration of the deployment,
the communication between these tiers will require to be
optimized, using compressed proprietary protocols
through TCP sockets instead of XML formatted data
through HTTP.

To perform these optimizations, WebLab-Deusto 3.0
communications have been built on top of a pluggable
system of protocols. Currently, only two protocols have
been written, but new protocols will be added. These
protocols are SOAP and “Direct”, which calls the method
name of the server in the same program instance. The
decision of choosing between the different communication
systems is handled through a communications broker. If a
server wants to communicate with other server, it provides
the WebLab-Deusto address of this server, and the
communications broker will check what possible
protocols can be used and it will automatically choose the
fastest one. For instance, if two servers are located as
different object instances in the same process, the “direct”
protocol will be used, since it avoids the use of a network.
If the two servers are located in different machines in the
same network, it will use any network protocol, such as
SOAP (the only network protocol implemented in the
current version). If these two servers are in the same
machine, an IPC protocol (such as UNIX sockets) is used,
and if no IPC protocol is found (we don't support any IPC
protocol under Microsoft environments) the
communications broker would fall back to SOAP.

Because of this protocol-agnostic system, the Remote
Laboratory can be configured in a very flexible way,
supporting the avoidance of communications between
different tiers if they are not necessary.

The communications with the client, though, only
support SOAP at this moment, since sockets-based
communications would not be directly supported by a
pure AJAX application. Anyway we are working on
provide a sockets-based alternative for performance
reasons. This sockets-based alternative is only an
alternative since relying exclusively on it would introduce
problems with HTTP proxies and firewalls.
3) Implementation notes

WebLab-Deusto 3 design is briefly drawn in Fig. 2. The
logic software has been built on top of an WebLab-

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 13

TOWARDS A DISTRIBUTED ARCHITECTURE FOR REMOTE LABORATORIES

independent layer that can be reused for other projects.
This WebLab independent layer supports the dynamically
generated communications engine, as it does support some
utility modules (for caching, logging, and sessions
management). These modules are prepared to support an
scalable architecture. For instance, the session
management module supports storing the sessions in a
MySQL database in order to make it possible to process a
user request in a server and the next request in other
server.

On top of it, the different servers have been
implemented, as well as the hardware managers (called
“Micro Servers” in Fig. 2). These hardware managers
deserialize the messages created in the client and interact
with a shared library of low-level hardware handlers such
as “Xilinx Impact” or “Serial Port”. The number of
protocols, hardware managers and devices is going to be
increased in the future.

Figure 2. WebLab-Deusto 3.0 Design

D. Results
WebLab-Deusto has been successfully used by students

in the University of Deusto since February 2005, along the
three different versions. WebLab-Deusto v.3 started being
used by students in October 2007, and since then it has
been used in five different classes with four different
experiments, deployed along three different rooms of the
Faculty of Engineering with four different dedicated
servers. Another experiment has already been developed
and will be used during the next course. More experiments
will be added during the next course.

IV. CONCLUSIONS AND FUTURE WORK
Traditionally, Remote Laboratories have been focused

on specific solutions for specific problems. This paper has

shown several software aspects that should be considered
before designing the architecture of a Remote Laboratory,
and the benefits of it. Consequently, we have applied these
aspects to our own WebLab in order to progress to a
scalable, extensible and flexible Remote Laboratory.

For future work we plan to increase the number of
experiments and devices, and we plan to add a socket
based alternative in the client side. We also plan to add
more protocols to the communications engine for
performance reasons.

REFERENCES
[1] C. Gravier, J. Fayolle, B. Bayard, M. Ates and J. Lardon, State of

the Art About Remote Laboratories Paradigms - Foundations of
Ongoing Mutations. International Journal of Online Engineering,
Vol 4, No 1 (2008).

[2] J. Garcia-Zubia, P. Orduña, D. López-de-Ipiña, U. Hernández and
I. Trueba. Section III - Remote labs development issues, Remote
Laboratories from the Software Engineering point of view. July
2007. ISBN: 978-84-9830-077-2

[3] I. Gustavsson, J. Zackrisson, H. Åkesson, L. Håkansson, I.
Claesson. and T. Lagö. Remote Operation and Control of
Traditional Laboratory Equipment. International Journal of Online
Engineering, Vol 2, No 1 (2006).

[4] J. García-Zubia, D. López-de-Ipiña, P. Orduña. Towards a
Canonical Software Architecture for Multi-Device WebLabs.
IECON 2005, 31st Annual Conference of the IEEE Industrial
Electronics Society, ISBN: 0-7803-9253, pp. 2146-2151,
November 2005.

[5] D. López de Ipiña, J. García-Zubia and P. Orduña. Remote
Control of Web 2.0-enabled Laboratories from Mobile Devices.
2nd IEEE International Conference on e-Science and Grid
Computing, eScience 2006, Amsterdam (Netherlands), December
2006, ISBN 0-7695-2734-5

[6] MySQL, http://www.mysql.com/
[7] Google Web Toolkit, http://code.google.com/webtoolkit/

AUTHORS
J. García-Zubia is with the Faculty of Engineering,

University of Deusto, Avda. De las Universidades 24,
48007 Bilbao, Spain (e-mail: zubia@eside.deusto.es).

P. Orduña, is with the Tecnológico Fundación Deusto,
Avda. De las Universidades 24, 48007 Bilbao, Spain (e-
mail: pablo@ordunya.com).

I. Angulo is with the Faculty of Engineering,
University of Deusto, Avda. De las Universidades 24,
48007 Bilbao, Spain (e-mail: iangulo@eside.deusto.es).

J. Irurzun is a student of the Faculty of Engineering,
University of Deusto, Avda. De las Universidades 24,
48007 Bilbao, Spain (e-mail: jaime.irurzun@gmail.com).

U. Hernández is with the Faculty of Engineering,
University of Deusto, Avda. De las Universidades 24,
48007 Bilbao, Spain (e-mail: uhernand@eside.deusto.es).

This article was modified from a presentation at the REV2008
conference in Düsseldorf, Germany, June 2008. Manuscript received 08
July 2008. Published as submitted by the authors.

14 http://www.i-joe.org

