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Abstract—In this paper, a high-resolution front tracking 
method was presented for interface tracking simulation with 
Runge-Kutta discontinuous Galerkin methods. An interface 
treating method of the discontinuous methods is presented. 
This method don’t construct the ghost fluid and the flow 
information on both sides next to the interface is used to 
solve the interfacial status. The limiter adopted the combi-
nation of the shock detection and monotonicity-preserving 
limiter and level set method is used for tracking the inter-
face. Result shown that the front tracking of the high-order 
accurate Runge-Kutta discontinuous Galerkin method ex-
hibits very good agreement with exact solution in the inter-
face condition that contain strong shock. 

IndexTerms—Runge-Kutta discontinuous Galerkin meth-
ods; high-resolution; limiter; monotonicity-preserving 
schemes; level set technique. 

 INTRODUCTION I.
The treatment of moving interfaces and their vicinity 

field is crucial in multi-medium flow simulation due to its 
discontinuous contact. In general, these types of methods 
can be separated into two categories by how each consid-
ers the interfaces: diffuse interface method (DIM) and 
sharp interface method (SIM).  

In the DIM [9,10,11,12], the interface is modeled as a nu-
merically diffused one (area), which is similar to capturing 
a discontinuity in gas dynamics. In fact, it can be men-
tioned that this type of diffused interface is a kind of arti-
ficial diffusion that is created by numerical calculations. A 
way to circumvent the numerical diffusion is to use a 
higher order method. The major drawback in diffuse inter-
face methods is the numerical diffusion which can lead to 
a very bad representation of the interfaces, especially 
when long time computations are needed. 

In the sharp interface methods, a special effort is made 
to find the right location of the interface and to treat the 
interface explicitly. This method includes Euler methods, 
including the level set[14] and VOF approaches[13] com-
bined  Euler–Lagrangi-an methods, including front track-
ing and front tracking with ghost fluid methods, and ALE 
methods[15]. ALE methods often result in strong distorted 
meshes. the mesh must be able to capture all inclusions, 
which may be very costly if these ones are small. 

The other important part is the interface treating meth-
od. The GFM [1,2,3,4,5,6,7,8] (ghost fluid method) treats the 
material interface as an internal boundary, and by defining 
ghost cells and ghost fluids, the two-medium flow can be 
solved via two respective single-medium Riemann prob-

lems. Based on the GFM, a new interface treating method 
is presented. 

This article is concerned with the approximation of 
multiphase compressible flows with a high order method. 
We will only deal with interface problems and are inter-
ested in discontinuous Galerkin (DG) methods and level 
set method[19-20] is used for tracking the interface. 

The completely discontinuous piecewise polynomial 
space is employed in DG method, which was used for 
solving the first order linear and nonlinear hyperbolic 
problem since the discontinuous Galerkin finite method 
was proposed by Reed and Hill[7] for neutron transport 
equations. Cockbum et al. established a framework for 
nonlinear time dependent hyperbolic conservation law, 
using nonlinearly stable high order Runge-Kutta time 
discretization [8], discontinuous Galerkin discretization in 
space with Riemann solvers as numerical fluxes and total 
variation bounded nonlinear limiter [9], to achieve non-
oscillatory properties in condition of strong shocks. There 
are many limiters [14,22,23,24] ,and in this article, the limiter 
adopted the combination of the shock detection and mono-
tonicity-preserving limiter.  

 GOVERNING EQUATIONS AND NUMERICAL METHODS II.

 Governing Equation A.
A 1D analysis is given for illustrating the alghrothm in 

certain situation. The 1D Euler equation gives as, 
( ) 0

F UU
t x

!!
+ =

! !                                             (1) 
Where U = [!, !u, E]T, F(U) = [!u, !u2+p, (E+p)u]T, ! 

is the density, u is the velocity, p is the pressure and E is 
the total energy. The total energy E is given as follow: 

 E = !e + !u2/2                                                           (2) 

Where e is the specific internal energy. For system clo-
sure purpose, the equation of state (EOS) is needed. As-
suming the EOS here is equivalent to the Mie-Gruneison 
family state equations, then one obtains:  

 !e = f(!)p + g(p)                                                    (3) 

Where f and g are functions of density and some other 
constants relative to heat conductivity. Here we focus on 
two types of EOS. The first one is the "–law for perfect 
gases, in this case f = 1/("-1) and g =0.0. The second one 
is the Tait’s EOS for water, where f = 1/(N-1) and g = 
N(B-A)/(N-1), N =7.15, A= 1.0#105 Pa, B =3.31#108 Pa 
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and ! =1.0#103 kg/m3. Detail of the two types of EOS 
can be seen in Ref. [3]. 

 The Interface Treating Method B.
In this section, present the new interface treating meth-

od. 
The original GFM, is shown in Fig. 1 (a) and An illus-

tration of the real GFM procedure[21]  is shown in Fig. 1 
(b). the information of the neighbor cell is employed to 
update the interface status. In the mixed cell method, the 
mixed cell is employed for predicting the interfacial status 
and the predicted status update the fluid flow states in the 
interface element.  

In this paper, we employ the data at the centroid of the 
neighbor cell of the interface element to define the Rie-
mann problem at the interface for predicting the interfacial 
status. An illustration is shown in Fig. 1 (c) 

Assume Ii = [xi-1/2, xi+1/2] is the cell where the inter-
face locates and is called the interface cell. The cells Ii-1 
and Ii+1 are single medium cells as shown in Fig. 1(c). A 
Riemann problem can be constructed by taking the input 
data as UL=Uhi-1 and UR=Uhi+1 ( UL=Uhi and 
UR=Uhi+1, or UL=Uhi-1 and UR=Uhi+2).The intermedi-
ate states of the interface are UIL=(!IL, uI, pI) and 
UIR=(!IR, uI, pI).  

In the process of iteration, the numerical procedure we 
use is the following: 

1. To carry out a time marching, Eq.(1) is solved using 
the third Runge-Kutta scheme and a time step is selected 
to satisfy the CFL condition. 

2. Advance and reinitialize the level set function field 

3. Find the interface cell (
1 1
2 2

0
i i
! !

+ "
# $

) and construct 
the Riemann solver. One get the intermediate state. 

4. Update U according to the DG method except the 
boundary. When the neighboring cell is the interface cell, 
the source term in the DG method is selected as follows 
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5. Carry out the limiter to control the numerical oscilla-
tions. 

6. Repeat the step 4 and step 5until the third Runge-
Kutta scheme is achieved 

7. Repeat the step 1-6 until the calculation is achieved. 
When the above procedure is employed to calculate, we 

find some classic limiter is not as efficient as in the past 
and make some improvement. 

 NUMERICAL EXPERIMENTS III.
Numerical experiments will be carried out for the inves-

tigation of the presented interface treating method and the 
monotonicity-preserving limiter. All example adopts the 
level set method to track the interface. Here mGFM1 
denotes the real ghost method by taking the input data as 
UL=Uhi and UR=Uhi+1,, and mGFM2 denotes the pre-
sented interface treating method. Gas shock tube problem 
were simulated for test the method. 

Consider a 2-m domain with 2000 grid cells. The do-
main is filled with kind of compressible flow. The initial 

 

 

 
Figure 1.  Updating the real and ghost nodes in the ghost fluid methods 

and the presented methods 

flow parameters on both sides of the interface are pH = 
1.0, pL = 0.1, !H = 1.0, !L = 0.125, uH = uL = 0.0, "H = 
"L = 1.4, CFL = 0.3. The interface is initially located at x0 
= 1.0. the calculation time is 0.4 s. 

Here the presented interface treating method is em-
ployed for testing accurate monotonicity -preserving lim-
iter. 

Pressure and density of the computation are shown in 
Fig. 2 (a1-a2) when the monotonicity -preserving limiter 
was employed for detection and reconstruction. Obvious-
ly, oscillation occurs in rarefaction wave region. So we 
make an improvement. The shock detection is adopter for 
discontinuity detection and monotonicity-preserving lim-
iter for reconstruction is just for reconstruction. The result 
is shown in Fig. 2(b1-b2). We can see that the result is 
optimal and this scheme can inhibit the oscillation. 

 CONCLUSION IV.
In this paper, the front tracking with Runge-Kutta dis-

continuous Galerkin methods was presented.  
The level set method is used to track the interface. The 

aim of this research focuses on the interface treating 
method and numerical oscillation suppression. The con-
clusions are as follow: 

The presented method can work well when the Rie-
mann problem can be constructed and implementation of 
the method is easier compared to the real ghost fluid 
method. For numerical oscillation suppression, considera-
ble accuracy was achieved when the combination of shock 
detection and the monotonicity-preserving was employed. 
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Figure 2.  Comparison of computation data to the analytical results (a1) 
Pressure obtained when mp is used to detect and restructure; (a2) Densi-

ty obtained when mp is used to detect and restructure; (b1) Pressure 
obtained when kxrcf is used to detect and mp is used to restructure; (b2) 
Density obtained when kxrcf is used to detect and mp is used to restruc-

ture. 
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