
Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

Framework for Rapid Integration of Offline Experiments
into Remote Laboratory

https://doi.org/10.3991/ijoe.v13i12.7738

Ning Wang
University of Houston, Texas, USA

Gangbing Song
University of Houston, Texas, USA

Xuemin Chen!!"
Texas Southern University, Texas, USA

 chenxm@tsu.edu

Abstract—Remote laboratory (RL) has become an important component of
online education and smart factory due to its capability of remote operation and
cost-saving. Recent advantages of information technology have provided vari-
ous ways to develop RLs. However, how to rapidly bring an offline experiment
online is still a vital issue in the development of RL. In this paper, a new flexi-
ble framework based on social instant messaging (IM) application architecture
is proposed for integrating an offline remote experiment into RL rapidly as a
communication node with unique ID. To rapidly connect the LabVIEW con-
trolled devices to server, a new LtoN_UID (LabVIEW to Node.js with Unique
ID) module built on Socket.IO protocol is designed and implemented. To
demonstrate the effectiveness of this new flexible framework, two existing en-
gineering experiments, i.e., a Smart Vibration Platform (SVP) experiment and a
PID motor speed control experiment, are integrated into remote laboratory.

Keywords—Remote Laboratory, Instant Messaging Application Architecture,
Flexible Framework, LabVIEW, Node.js

1 Introduction

To significantly reduce the cost of maintaining a wide variety of equipment, more
and more remote accessible networked equipment have been developed for educa-
tional and industrial applications [1]. For the Remote Laboratory (RL) development,
two issues need to be addressed for integrating an offline experiment into a RL sys-
tem [2], [3], i.e., 1) the employment of special software plugins are seriously affecting
the cross-platform capability of the RL system; 2) the special system architecture
need to be designed and implemented to connect the client applications and the exper-
imental equipment. Current research activities to tackle these issues are summarized
as follows.

192 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

A real-time remote access laboratory with distributed and modular was designed at
University of Southern Queensland [4]. They proposed a general architecture for
distributed Peer-to-Peer (P2P) network control systems, but only focused on Micro-
Controller Unit (MCU) and communication protocol selection. However, how to
develop a flexible software system to quickly develop the RL system is still not ad-
dressed clearly.

A flexible RL architecture was designed and implemented at University of Li-
moges and University of Mostaganem [5]. They proposed a flexible architecture
based on Node.js web engine, and used a FEHI (Flexible Ethernet Hardware Inter-
face) and PEB (Practical Evaluation Board) to directly handle the real-time communi-
cation between experiment equipment and Node.js server without using any software
tools, such as NI LabVIEW, MATLAB. However, for an existing experiment, the
new hardware interface and PEB need to be reconfigured and re-implemented.

A unified framework has been developed at Texas Southern University and Uni-
versity of Houston based on the traditional P2P RL system architecture [6], [7]. To
support real-time communication, an LtoN (LabVIEW to Node.js) module was de-
signed and implemented for traditional P2P connection between user and experi-
mental device [6]. However, this LtoN module can only connect an experiment with
server using tranditional P2P approach to achieve real-time communication. Conse-
quently, how to rapidly integrate experiment into the RL system is still not well ad-
dressed by this framework.

As the experimental hardware and the network model limitations which are dis-
cussed above, it is hard to be extended to other institutes with their proposed solu-
tions. Therefore, how to design a flexible approach to rapidly integrate remote exper-
iment into RL system is still a vital research topic for RL development [5], [6], [7]. To
address this essential issue, a new flexible framework based on social Instant Messag-
ing (IM) application architecture as a TURN-KEY remote experimental integration
solution is proposed and implemented in this paper. With this new framework, a new
offline experiment can be added into the RL system as a node with its unique ID.
With the Web 2.0 technology, this flexible framework is easy to be integrated into
most of popular web-based Learning Management Systems (LMSs), such as, Moodle,
iLab Shared Architecture (LSA) to connect them into social network. Moreover, a
new LtoN_UID (LabVIEW to Node.js with Unique ID) module built on Socket.IO
protocol is designed and implemented for rapid connecting the experimental equip-
ment with server. To the best knowledge of the authors, this solution is the first one
using the popular social IM application architecture to implement the RL system
without extra plug-ins.

To demonstrate the effectiveness of this new flexible framework, a remote Smart
Vibration Platform (SVP) experiment and a remote PID motor speed control experi-
ment are revamped. Meanwhile, this new framework also can be used for the integra-
tion of industrial equipment remote control and monitoring applications. It will be an
essential improvement for the RL system development in future.

The rest of the paper is organized as follows. Empirical study of related technolo-
gies are presented in Section 2. In Section 3, the architecture of the new flexible

iJOE ‒ Vol. 13, No. 12, 2017 193

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

framework is presented. In Section 4, the rapid integration of two remote experiments
is discussed. Concluding remarks are drawn in Section 5.

2 Empirical Study of Related Technologies for Flexible
Framework Development

The distributed RL system aims to expand a One-to-Multi (O2M) communication
paradigm, where one central system serves multiple users; or to a Multi-to-Multi
(M2M) communication paradigm, with many users using many experiments by dif-
ferent providers. In a distributed system, experimental modules need to be created and
hosted by individuals. Users are all scattered in the network, and anyone can connect
to any experiment if it is available. To achieve this goal, a distributed RL system with
excellent features should have a flexible system architecture, a stable real-time mid-
dleware in server, and a high performance real-time data transmission protocol [4]. To
achieve these excellent features of the distributed system, online social IM application
architecture, Node.js and Socket.IO are the suitable candidates for the new flexible
framework implementation based on our empirical research.

2.1 Document title and meta-data

Social IM application can refer to any kind of communication over the Internet that
offers a real-time communication from any senders to any receivers. It addresses One
to One (O2O) communications as well multicast communications (M2M) from many
senders to many receivers, or may be a feature of a web conferencing service [8]. For
a web-based online classroom, which is a kind of social IM application, could provide
effective interactive tools and contextual learning scene, and it can deliver two part
services, instructional communicating service and collaborative learning environment
service [9]. The most notable strength of online IM application is to flexibly and rap-
idly connect the different users together [9]. As shown in Fig. 1, a social IM applica-
tion has two parts, chat server module and client web module. In the server module,
normally, there is a user management module to create the unique user ID for every
user. Meanwhile, the server module creates a thread based on the unique user ID to
support the users’ real-time communication. The user management module supports
three chat patterns: O2O, O2M and M2M. The different chat patterns can flexibly
combination based on the users’ requirement. The new flexible framework inherits
this advantage from the online IM application to provide three different communica-
tion patterns for RL integration. Thus, the new framework can offer a more flexible
way to build up different pattern remote experiments for engineering education, re-
search activities and industrial applications.

194 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

Send
Message

Send
MessageUpdate Update

Send
Message

Send
MessageBroadcast Broadcast

Chatter Chatter

Chat Room

Client Web Application

Chat-Room Web Server

Fig. 1. The web-based IM system architecture.

2.2 Node.js Web Engine

To implement an efficient middleware for supporting high performance real-time
data transmission between experimental devices and users, a stable web engine must
be chosen. With the Internet of Things (IoT) technology explosive development, the
Node.js is known for its speed, scalability and efficiency making it suitable candidate
for data-intensive and real-time devices and applications development [10]. With
these advantages, it has become a prime candidate for RL system implementation.
Node.js is a web engine worked in server side, and is designed to notably setup web
server for writing scalable Internet real-time communication applications [11]. Fu-
thurmore, an event driven operation mode and asynchronous I/O port are used in
Node.js to minimize overhead and maximize scalability. It is unlike the tranditional
JavaScript programs, Node.js is exe-cuted is executed as a server side JavaScript
application. In addition, Node.js can implement multiple common JavaScript specifi-
cations in server side. Meanwhile, it can provide a Read Eval Print Loop (REPL)
environment for interactive Javascript app testing. Comparing with Apache web en-

iJOE ‒ Vol. 13, No. 12, 2017 195

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

gine, the Node.js is an especially fast and efficient web engine which is more suitable
to handle the high perfor-mance real-time communication.

Because Node.js stays away from certain undesirable interfaces, such as synchro-
nous I/O, it only exposes non-blocking asynchronous interfaces to the programmer.
As each web application running on the Node.js is a single thread, the users don’t
need to consider an event completing and taking over while they are in the middle of
another task. Node.js uses the module architecture to simplify the creation of complex
web applications [12]. Each module contains a set of functions related to the 'subject'
of the module. For example, the Node-HTTP-proxy module contains functions specif-
ic to HTTP (Hypertext Transfer Protocol) Proxy. Furthermore, it provides some core
modules to support user to access files on the file system, to create HTTP Proxy and
Socket.IO, and to perform other useful functions. Node.js is also a promising technol-
ogy and an excellent choice for high load web applications.

2.3 Data Transmission Protocol Selection

Currently, most of the RL systems have used the Web Service technology to han-
dle the real-time data transmission. However, the drawback of the Web Service for
real-time data communication is the low transmission efficiency [2], and normally
some extra plugins, such as Java Applet, Adobe Flash component, are required to fill
this gap. With the advent of HTML5, WebSocket protocol provides a new approach
to address the low transmission efficiency and extra plugin issues of Web Service
technology [13]. The WebSocket protocol makes more interaction between a web
browser and a server-side middleware possible, and facilitates the real-time duplex
data transmission between client-side web apps and the server-side middleware. In
addition, the real-time data communications can traverse the TCP (Transmission Con-
trol Protocol) port 80 with the WebSocket protocol, which is of benefit for those envi-
ronments blocking non-web Internet connections by using a firewall [14]. Generally,
the WebSocket mainly used to solve several key issues which cause the low transmis-
sion efficiency with REST (REpresentational state transfer) and HTTP. These issues
include 1) Bi-directional: Normally, HTTP is an un-directional protocol, so the client
always initiates a request, and returns a response after server processes. At last, the
client consumes the response from server. However, as a bi-directional protocol,
WebSocket has not the pre-defined message patterns such as request/response [15].
With the WebSocket, Either client or server can send a message to the other part. 2)
Full-duplex: HTTP allows a request message from client to server and then server
sends a response message to the client. However, WebSocket allows client and server
to talk independent of each other [15]. 3) Single TCP Connection: Typically, a new
TCP connection is initiated for a HTTP request, and is terminated after the response is
received. The other new TCP connection should be established for another HTTP
request/response. However, for WebSocket, the HTTP connection is upgraded with
the standard HTTP Upgrade mechanism [15]. The client communicates with the serv-
er via the same TCP connection for the lifecycle of WebSocket connection. 4) Lean
Protocol: As the HTTP is a chatty protocol, the Advanced REST Client extension can
send a set of HTTP headers in request message. However, the purposes of WebSock-

196 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

et are to break the limitations of the request/response protocol such as HTTP [15]. In
summary, WebSocket provides an alternative approach to the REST/SOAP (Simple
Object Access Protocol)/AJAX (Asynchronous JavaScript and XML) technologies for
developing the real-time communication web application, such as, some web-based
control applications [14]. Moreover, WebSocket is the next generation method of
asynchronous communication between client and server, and is already standardized
by the World Wide Web Consortium (W3C). Currently, it is already implemented in
the most of the popular web browsers, such as Microsoft Edge, Chrome, Safari, Fire-
fox, Opera, and among others [15].

Socket.IO is designed based on WebSocket, and enhances the WebSocket by
providing built-in multiplexing, horizontal scalability, automatic JSON (JavaScript
Object Notation) encoding/decoding, and more [16]. In general, Socket.IO uses fea-
ture detection to decide which approach, such as WebSocket, AJAX long polling or
Flash, will be used to establish the connection for real-time web applications.
Through blurring the differences between the different transmission mechanisms, it is
possible for Socket.IO to support the real-time web applications in any popular
browsers. Socket.IO includes two parts: a client-side library for the browsers, and a
server-side library supported by Node.js. Although Socket.IO works as simply a
wrapper for the WebSocket, it provides more features, which includes broadcasting to
multiple sockets, storing data associated with each client, and asynchronous I/O, to
support real-time web applications development.

To compare the different real-time data transmission protocol performance, we
tested 10, 100, 250 and 500 data exchanges per millisecond between the client web
module and the server-side middleware. Each data exchange between the Node.js
server and the Chrome browser is a 4K bytes random data string. The Node.js server
is running in release mode. Meanwhile, the console messages are minimized output
for both server and client. The server is HP Proliant DL380e Gen8. Hardware of the
server includes Intel Xeon E5 2.5 GHz processer, 16 GB of RAM. The network is the
University of Houston’s main Campus Wi-Fi network, and the download speed of this
network is around 45 Mbps and the upload speed around 75 Mbps. Based on the test
results listed in Table I, the Socket.IO and WebSocket have better performane than
AJAX/REST in general. Comparing the SocketIO with WebSocket, SocketIO has
better performances than WebSocket has. Consequently, Socket.IO is selected for
implementing real-time data transmission between the users and the experimental
devices.

Table 1. Comparison between different data transmission protocol

Data Exchanges
(Number of data exchanges)

AJAX/REST
(kb/ms)

Socket.IO
(kb/ms)

WebSocket
(kb/ms)

10 40 32 30
100 320 340 330
250 800 830 820
500 1500 1600 1600

iJOE ‒ Vol. 13, No. 12, 2017 197

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

3 Methodology

To answer our research question, “How to design a framework to rapidly and flexi-
bly integrate the remote laboratory system?”, a novel flexible framework is proposed.
It is designed based on the online IM application architecture, and a new version LtoN
module is developed to rapidly and flexibly integrate the remote laboratory. Fig. 5
shows the architecture of the novel flexible framework. The novel flexible framework
includes three parts: client web module, server module, and LtoN module for experi-
ment control.

3.1 Client Web Module

In the client web module design and implementation, the MVC (Model-View-
Controller) software architectural pattern is used for implementing the User Interfaces
(UI) as shown in Fig. 2. As client web technology has matured, frameworks, such as
AJAX, JavaScript MVC, AngularJS, have been created that allow the MVC compo-
nents to execute partly on the web browsers. To run the client web module on any
popular browsers, the HTML5 technology is used for the web application implemen-
tation. Some popular development languages, HyperText Markup Language (HTML),
Cascading Style Sheets (CSS), and JQuery/JQuery-Mobile JavaScript libraries, for
web application development are involved as well. In addition, to resolve the need of
installing extra plugins for support efficient real-time data transmission, the Socket.IO
module is used to client web module implementation. Meanwhile, the server-based
Mashup technology is used for User Interface (UI) integration as well.

Socket.io
ModuleController

Model

View

Send Commands

Send
Commands

Update
Datas

Real-Time
Communication

Fig. 2. The client web module designed model with MVC.

3.2 Server Module

To rapidly and flexibly connect the users with experiment equipment together, a
communication management module is designed based on the online IM application
architecture. Every user, who is real person or experimental equipment, is arranged a

198 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

unique ID, and system creates a communication thread and pair them together based
on this unique ID. With this module, the remote laboratory system based on the novel
flexible framework can flexibly create one user to one equipment experiment, multi
users to one equipment cooperative experiment, one user to multi equipment experi-
ment and multi users to multi equipment cooperative experiment. It will significantly
benefit the remote laboratory implementation. Fig.3 shows the architecture of server
module.

Server Application

Node.js

Socket.io

Apache

Node-Http-Proxy

Video
Transmission

User Management

Web
App

MySQL DB

UI APIs

System File System

Communication Management

Fig. 3. The architecture of server module.

To resolve the Web Service technology performance issue, a combined solution of
both Apache web engine and Node.js web engine is implemented for the real-time
communication between experiment equipment and end users. Node.js enables web
developers to create a real-time communication web application in JavaScript which
are both server-side and client-side. In the Node.js server-side software system, Sock-
et.IO, a JavaScript library, is used to support real-time communication between server
and client. Moreover, a real-time video transmission solution based on the HTTP
Living Streaming (HLS) protocol also is implemented in server side. Thus, the server
module is directly built on the top of an Apache web server engine, a Node.js web
server engine, and a MySQL database. In addition, the Operation System (OS) of the
server uses Centos 7.0 OS to better support the server module.

iJOE ‒ Vol. 13, No. 12, 2017 199

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

3.3 The New LtoN_UID Module

To rapidly connect the experimental equipment into the remote laboratory plat-
form, an essential issue, “How to design a real-time communication module which
can be easily used to connect experimental equipment and end users?”, must be ad-
dressed. To address this issue, an easy to use real-time communication module based
on Socket.IO, namely LtoN_UID (LabVIEW to Node.js with Unique ID) is proposed
and implemented using LabVIEW [17], [18]. To fulfill the requirement of the new
online IM application architecture based framework, the unique ID management func-
tion has been integrated into the LtoN_UID module. The new LtoN_UID module can
support P2P and M2M real-time communication via the unique ID arranged by server.
Moreover, some bugs also have been fixed in this new LtoN_UID module to improve
its performance.

With the development of computer technology, LabVIEW also integrated a new
feature to interact with the experiment Virtual Instruments by using RESTful web
services technology. REST (Representational State Transfer) provides a lightweight
protocol accessible to a wide variety of clients. The architecture does not require
complex message passing and provides a simple interface for user to begin using Web
services in LabVIEW. However, it requires the client interface to be developed using
different technologies, and LabVIEW plug-ins must be installed in the browsers [43].
To resolve this plug-in issue and support efficient data transmission, the new real-time
communication module, LabVIEW to Node.js with Unique ID (LtoN_UID) is de-
signed and implemented.

Socket.io
Module Controller

Transfer
Model

Control
Module

Send Commands

Real-Time
Communication

Update
Datas

Update
Commands

Fig. 4. the LtoN_UID module designed model with MVC.

To design the LtoN_UID module, the MVC design approach is used as well. As
shown in Fig. 4, the LtoN_UID includes a real-time data transmission controller and
an experiment data transfer model. With the new LtoN_UID, the experiment control
module, which implements the experiment control logic, is connected with Socket.IO
module together. In order to achieve the secure data transmission, a new message
packet approach is designed and implemented. The example LabVIEW code of
LtoN_UID module is shown in Fig. 5. With this new version LtoN_UID module, the

200 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

client web module can real-time communicate with experimental equipment without
LabVIEW plug-ins. Meanwhile, any experimental equipment controlled by LabVIEW
can be rapidly integrated into the remote laboratory system anywhere.

Fig. 5. the code examples of new LtoN_UID module with experiment ID in LabVIEW.

iJOE ‒ Vol. 13, No. 12, 2017 201

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

4 Implementation Discussion

To illustrate the effectiveness of the new flexible framework, a SVP experiment
and a PID motor speed control experiment have been rapidly connected with users.
Fig. 6 shows the whole implementation process of two remote experiments based on
the new flexible framework. The detailed process of the experiment integration is
given below

4.1 Experiment Hardware Setup.

The SVP hardware platform include a flexible steel frame fixed on top of a plexi-
glass box, a motor, two Shape Memory Alloy (SMA) wires and a purchased magnetic
iron clamped on a container of Magneto-Rheological (MR) fluid. To measure the
acceleration, vibration of the platform and temperature of SMA, a data acquisition
device, NI DAQ 6008 USB, to get the experimental data from the sensors of SVP.

The PID motor speed control hardware contains a) DC motor with tachometer, b)
power amplifier c) power supply for the amplifier, d) NI USB-6361 X Series DAQ
and e) PC workstation.

4.2 Experiment Software Integration.

The software implementation of two remote experiments includes three tasks: the
client module implementation, server module integration and experiment control
application implementation.

Client Web module Implementation. To implement the client app, HTML5
Technology is used to implement the user interface. With the server-based Mashup
technology, the data was analyzed and reformatted on the server module, and then the
data was transmitted to the user's browsers. To achieve the real-time communication
with server module, a communication function with UID is implemented using Sock-
et.IO module in client app. Through this communication function, client app can be
rapidly and flexibly connected with two experiments through server module.

As shown in Fig. 6, to implement the web application, HTML5 Technology is used
to implement the user interface. The new LtoN_UID protocol module is used to im-
plement the real-time data communication. With the server-based Mashup technolo-
gy, the data was analyzed and reformatted on the remote server, and then the data was
transmitted to the user's browsers. The UI includes three parts: 1) experiment real-
time video; 2) real-time experiment data display; 3) experiment control components.

Server Module Implementation. The server module is directly built on the top of
a wiki based remote laboratory platform [19]. It includes two server engines working
together, Apache server engine and Node.js server engine. Meanwhile, the Node.js
server engine to support the new LtoN_UID protocol module to handle the experi-
ment data in real-time transmission. Based on the online IM application architecture,
a communication management module, which is used to handle the real-time data
transmission through the unique ID, is implemented. Moreover, the user management

202 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

Apache and
Node.js

Communication
Management

Module

Socket.io

LabVIEW Host
Program

LtoN_UID embed in
experiment Control App

LabVIEW Host
Program

Socket.io

Socket.io

Socket.io

User
Management

Module

Server Module Experiment
Control Module

Client App with
Unique ID

Client App with
Unique ID

Client Module

o

LtoN_UID embed in
experiment Control App

Fig. 6. The whole implementation process of a remote PID experiment and a remote SVP

experiment.

module, which is used to arrange and manage the user unique ID, is implemented and
integrated into the server module as well.

Integrate the New LtoN_UID Module to the Experiment Control Application.
With the new version LtoN module, students can conduct the experiment, save the
experiment data to file system. More details of this new real-time data transmission
protocol are illustrated in the following:

• The new module includes two parts, experiment equipment control part running in
workstation and implementing by LabVIEW; and server part running in web server
which was developed using JavaScript language and enhanced by the Socket.IO.

• In this new LtoN_UID module, some special communication instruction set based
on the experiment unique ID to connect the experiment with server-side user man-
agement module to handle the real-time data transmission.

• In this new module, we revise some brief instructions to control experiment pro-
gress for improving the real-time communication performance.

Based on the above novel flexible framework, users can build up a distributed re-
mote laboratory and rapidly and flexibly integrate any experiment developed by Lab-
VIEW via its unique ID into the remote laboratory.

iJOE ‒ Vol. 13, No. 12, 2017 203

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

5 Future Works

Although the novel flexible framework delivers a new rapid integration approach
to support remote laboratory development, there are still further development required
to improve the new framework stability and usability. More specifically, issues that
need improvement are as follows:

1. Integrating the novel flexible framework into more Learning Management Sys-
tems. Currently, we implemented our Wiki-based remote laboratory management
platform based on this novel framework, and it includes a scheduler, a communica-
tion management module, a user management module, and a learning materials
management module. In future, we plan to integrate the novel flexible framework
into some popular LMS (e.g., Moodle, MIT iLab Shared Architecture) to avoid
double registration of students.

2. Integrating some industrial experiments based on our novel flexible framework.
Such as, industrial equipment remote monitoring application, industrial equipment
remote training application, etc.

6 Conclusion

In this paper, a new flexible framework has been designed and implemented suc-
cessfully with a combination of advantages of social online IM application architec-
ture and the new LtoN_UID module for experiment equipment real-time control.
Comparing to other remote laboratory development framework including the unified
framework we designed before, this new framework solved the issues of flexibility
and scalability in remote laboratory development. Remote laboratory developers can
bring the LabVIEW controlled offline experiment or equipment online with less effort
with this framework. This flexible framework will significantly benefit remote labora-
tory development for online engineering education and smart factory.

7 References

[1] L. Gomes and S. Bosgoyan, "Current trends in remote laboratories", IEEE Transactions on
Industrial Electronics., vol. 56, no. 12, pp. 4744-4756, Dec. 2009. https://doi.org/10.1109/
TIE.2009.2033293

[2] M. Tawfik, D. Lowe, C. Salzmann, D. Gillet, E. Sancristobal and M. Castro, "Defining the
Critical Factors in the Architectural Design of Remote Laboratories." IEEE-RITA, vol. 10,
no. 4, pp. 269-279. Nov. 2015. https://doi.org/10.1109/RITA.2015.2486388

[3] M.A. Prada, J.J. Fuertes, S. Alonso, S. García, and M. Domínguez, “Challenges and solu-
tions in remote laboratories. Application to a remote laboratory of an electro-pneumatic
classification cell.” Computers & Education, vol.85, pp.180-190, 2015.
https://doi.org/10.1016/j.compedu.2015.03.004

[4] A. Maiti, A.A. Kist and A.D. Maxwell, "Real-time remote access laboratory with distribut-
ed and modular design." IEEE Transactions on Industrial Electronics, vol.62, no.6, pp.
3607-3618, 2015.

204 http://www.i-joe.org

Paper—Framework for Rapid Integration of Offline Experiments into Remote Laboratory

[5] S. Farah, A. Benachenhou, G. Neveux, D. Barataud, G. Andrieu and T. Fredon, "Multi-
User And Real-Time Flexible Remote Laboratory Architecture for Collaborative and Co-
operative Pedagogical Scenarios." iJOE, vol.12, no.4, pp. 33-36, 2016.

[6] N. Wang, X. Chen, G. Song, and H. Parsaei, "Using Node-HTTP-Proxy for Remote Ex-
periment Data Transmission Traversing Firewall." International Journal of Online Engi-
neering (iJOE), Vol 11, No.2, pp.60-67, 2015. https://doi.org/10.3991/ijoe.v11i2.4443

[7] N. Wang, X. Chen, G. Song, and H. Parsaei, "Remote experiment development using an
improved unified framework." in World Confer- ence on E-Learning in Corporate, Gov-
ernment, Healthcare, and Higher Education, vol. 2014, no. 1, pp. 2003–2010, 2014.

[8] C.T. Moncreiff, "Computer network chat room based on channel broadcast in real time."
U.S. Patent 6,061,716, 2000.

[9] M. Dereshiwsky, "Equity in the Online Classroom: Adolescent to Adult." In Proc. Social
Justice Instruction Conf. 2016, pp. 33-42. https://doi.org/10.1007/978-3-319-12349-3_4

[10] S.L. Bangare, S. Gupta, M. Dalal, and A. Inamdar, "Using Node. Js to Build High Speed
and Scalable Backend Database Server." In Proc. NCPCI. Conf. 2016, vol.2016, pp.19.

[11] T. Hughes-Croucher, M. Wilson "Up and Running with Node.js ", Node: Up and Running
(1st Ed.), Sebastropol: O'Reilly Media, pp. 4-11, ISBN 978-1-4493-9858-3, April, 2012

[12] P. Teixeira, "Professional Node.js: Building Javascript based scalable software." John
Wiley & Sons, 2012.

[13] I. Fette, "The websocket protocol." Internet Engineering Task Force (IETF), 2011. pp. 5-6,
ISSN: 2070-1721.

[14] V. Pimentel, B.G. Nickerson, "Communicating and displaying real-time data with Web-
Socket." IEEE Internet Computing., vol.16, no.4, pp.45-53, 2012. https://doi.org/10.1109/
MIC.2012.64

[15] V. Wang, F. Salim, P. Moskovits, "The definitive guide to HTML5 WebSocket" Berkeley,
Calif, 2013, Vol. 1, USA: Apress, https://doi.org/10.1007/978-1-4302-4741-8

[16] R. Rai "The Socket.IO protocol", Socket.IO Real-time Web Application Development, Se-
bastropol: O'Reilly Media, pp. 87-91, ISBN 178-2-1607-87, February, 2013.

[17] N. Wang, X. Chen, G. Song, and H. Parsaei, "A novel real-time video transmission ap-
proach for remote laboratory development." International Journal of Online Engineering
(iJOE), Vol. 11, No. 1, pp. 1–4, 2015.

[18] Wang, N., Chen, X., Song, G. and Parsaei, H., 2015. "An Experiment Scheduler and Fed-
erated Authentication Solution for Remote Laboratory Access." International Journal of
Online Engineering, 11(3).

[19] N. Wang, X. Chen, Q. Lan, G. Song, H. Parsaei, and S.C. Ho, "A Novel Wiki-Based Re-
mote Laboratory Platform for Engineering Education." IEEE Transactions on Learning
Technologies, Vol. PP, No. 99. 2016 https://doi.org/10.1109/TLT.2016.2593461

8 Authors

Ning Wang is with University of Houston, Texas, USA.
Gangbing Song is with University of Houston, Texas, USA.
Xuemin Chen is with Texas Southern University, Texas, USA (chenxm@tsu.edu).

Article submitted 22 September 2017. Published as resubmitted by the authors 27 October 2017.

iJOE ‒ Vol. 13, No. 12, 2017 205

	iJOE – Vol. 13, No. 12, 2017
	Framework for Rapid Integration of Offline Experiments into Remote Laboratory

