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Abstract—Educational tool is one of the prominent solutions for aiding stu-
dents to learn course material in Information Technology (IT) domain. Howev-
er, most of them are not used in practice since they do not properly fit student 
necessity. This paper evaluates the impact of an educational tool, namely Py-
thonTutor, for completing programming laboratory task regarding data structure 
materials. Such evaluation will be conducted in one semester by implementing 
a quasi-experimental design. As a result, six findings can be deducted which 
are: 1) PythonTutor might positively affect student performance when the stu-
dents have used such tool before; 2) Sometimes, student perspective regarding  
the impact of educational tool is not always in-sync with actual laboratory re-
sult; 3) the impact of PythonTutor might be improved when similar data repre-
sentation is used consequently for several weeks; 4) the correlation between the 
use of PythonTutor and student performance might not be significant when the 
control and intervened group share completely different characteristics; 5) the 
students might experience some difficulties when they are asked to handle a big 
task for the first time; and 6) the students might be able to complete a particular 
weekly task with a promising result if the students have understood the material 
well. 

Keywords—quasi-experimental design, empirical evaluation, program visuali-
zation, educational tool, laboratory session   

1 Introduction 

According to the fact that students are one of the most influential resources in Uni-
versity, emerging issues on such domain are focused as research topics. Some of them 
are tracing alumni [1], predicting student outcome [2], detecting plagiarism among 
student’s assignments [3, 4], and aiding students to learn course material [5]. Among 
these mentioned issues, we would argue that the latest one is the most urgent issue 
since it affects student learning performance directly. 

For aiding students to learn course material, the use of educational tool has been 
proved to be effective, especially in Information Technology (IT) domain where most 
of the course materials involve abstract representation [5, 6]. However, in most cases, 
such tools are not applicable to be used in real learning environment since they do not 

iJOE ‒ Vol. 14, No. 2, 2018 155



Short Paper—A Quasi-Experimental Design to Evaluate the Use of PythonTutor on Programming Labo… 

fit student necessity [7]. We would argue that one of the main reasons for such unfit-
ness is the lack of empirical evaluation on real learning environment. Consequently, 
this paper is intended to mitigate the gap by proposing an empirical evaluation of an 
educational tool. To be specific, we want to evaluate the impact of PythonTutor (i.e. 
an educational tool to learn programming) for completing data-structure laboratory 
task in general and specific perspectives in regard to student grade. The findings of 
this work are expected to provide a brief insight into IT lecturers who plan to incorpo-
rate PythonTutor as their supplementary learning tool.  

2 Related Works 

Although IT is a prominent major for undergraduate students nowadays, some IT 
students experience difficulties for learning IT materials, especially algorithm [8, 9] 
and programming [10, 11]. They feel that learning such materials is not a trivial task 
since most concepts are abstract and require high logical thinking for further under-
standing. Consequently, to handle such issue, several educational tools for learning 
both algorithm and programming materials are developed. They are referred as Algo-
rithm Visualization (AV) and Program Visualization (PV) tools respectively. On the 
one hand, AV tools are focused on providing a brief concept of how standard algo-
rithms work without discussing the implementation [12]. It usually relies on interac-
tive visual and animation in order to keep the user’s attention. VisuAlgo [12] and AP-
ASD1 [13] are two examples which fall into this category. On the other hand, PV 
tools are focused on visualizing and animating program aspects based on its runtime 
execution [14]. It usually displays all information stored on a program in a debug-like 
manner. Jeliot 3 [15], JIVE [16], VILLE [17], and PythonTutor [18] are several ex-
amples which fall into this category.  

PythonTutor is a PV tool that is initially aimed at assisting students to learn pro-
gramming with Python [18]. Unlike other PV tools, PythonTutor is designed as a 
web-based application with responsive UI. It can be accessed from anywhere as long 
as the students are connected to the internet. In addition, it can also be used on various 
machines such as personal computer, laptop, tab, or smartphone.  

Based on the fact that several PV tools have been evaluated on real programming 
courses to measure their effectiveness comprehensively [19, 5], this paper proposes a 
quasi-experimental design to evaluate the impact of PythonTutor for learning pro-
gramming in laboratory sessions using students’ grade. To our knowledge, it is the 
first attempt that discusses such impact on given conditions. For our case study, stu-
dents from 4 classes of Basic Data Structure (BDS) course are considered as our par-
ticipants. They are asked to use such tool for completing their laboratory task in half 
of the semesters while experiencing the absence of such tool on the other half semes-
ter. Their laboratory results are then used to statistically evaluate PythonTutor’s im-
pact for completing programming laboratory task regarding data structure materials in 
general and specific perspectives. 

It is important to note that our work is different with works proposed in [20] and 
[21] that also evaluate the impact of PythonTutor. On the one hand, our work is dif-

156 http://www.i-joe.org



Short Paper—A Quasi-Experimental Design to Evaluate the Use of PythonTutor on Programming Labo… 

ferent with a work proposed in [20] since our work is more focused on laboratory 
session instead of theory session. Further, the work in [20] is focused on introductory 
course while our work is focused on basic data structure course. On the other hand, 
our work is different with a work proposed in [21] since our work evaluates the im-
pact of PythonTutor through student performance rather than student perspective. Our 
work will complement the work in [21] by providing a more-objective result (the 
result of work in [21] is rather subjective since it relies on questionnaire survey to-
ward the students). 

3 Methodology 

Evaluation will be conducted by performing a quasi-experimental design [22] in 
14-lecturer-weeks laboratory sessions of Basic Data Structure (BDS) course. The 
participants are first-year students who take BDS course on the even semester of 
2016/2017. They will be split into two groups before conducting the evaluation. Since 
there are four classes of BDS course during that semester, we assign two classes for 
each group. Class A (15 students) and B (10 students) are assigned to the first group, 
which will act as an intervened group for even weeks, whereas class C (19 students) 
and D (18 students) are assigned to the second one, which will act as an intervened 
group for odd weeks. As a result, group 1 consists of 22 students while group 2 con-
sists of 34 students. 

One of the predefined groups will be assigned as an intervened group while anoth-
er one will be assigned as a control group alternately during given laboratory sessions. 
For odd-week laboratory session, group 1 will be assigned to the control group and 
group 2 will be assigned to the intervened group. For even-week laboratory session, it 
will work in reverse: group 1 will be assigned to the intervened group and group 2 
will be assigned to the control group. If a group is assigned to a control group, stu-
dents in that group should complete their laboratory task in a conventional manner 
(i.e. without using PythonTutor). Otherwise, students in that group should complete 
their laboratory task with the help of PythonTutor if necessary.  

Each group will get similar laboratory tasks for each session; each task should be 
completed in 80 minutes. The detail of each task, including its assigned intervened 
group, can be seen in Table 1. Most given laboratory tasks are about implementing 
data structure concepts in Python programming language to solve problems. Some 
weekly tasks are split into several smaller sub-tasks to mitigate the difficulty of learn-
ing such task. However, the total score for each weekly task is still 100, regardless of 
how many sub-tasks are involved for each week. 

After 14-lecture-weeks laboratory sessions have been conducted, students’ labora-
tory grades will be collected. Those grades will be further analyzed to evaluate Py-
thonTutor’s impact for completing programming laboratory task regarding data struc-
ture materials in general and specific perspectives. On the one hand, for the general 
perspective, the impact is measured by comparing the result of intervened sessions 
toward the un-intervened ones on the same group. This evaluation will be conducted 
based  on paired  t-test.  On the other hand, for the specific (i.e. lecture week) perspec- 
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Table 1.  Detailed Laboratory Tasks and Their Assigned Intervened Group 

Lecture Week Task Description Group 

1st create two programs as a review and a program to implement a simple Ab-
stract Data Type (ADT) Group 2 

2nd create a program to implement a simple ADT and a program to show interac-
tion of two ADT objects. Group 1 

3rd create a program to use a standard array and a program to manipulate ADT 
objects in an array Group 2 

4th create a program to manipulate an ADT of array Group 1 

5th create a program to convert infix to postfix notation using an ADT of array-
based stack Group 2 

6th create a program to manipulate an ADT of array-based queue Group 1 
7th create a program to manipulate an ADT of standard linked list Group 2 

8th create a program to manipulate an ADT of standard linked list with more 
operations than 7th lecture week Group 1 

9th create a program to process an intersection between two linked lists Group 2 

10th create a program to manipulate an ADT of list-based stack and an ADT of list-
based queue Group 1 

11th create a program to manipulate an ADT of list-based priority queue Group 2 
12th create a program to manipulate an ADT of double pointer linked list Group 1 
13th create a program to manipulate an ADT of circular linked list Group 2 

14th create a program to implement shell sort and merge sort using an ADT of 
array Group 1 

 
tive, the impact is measured by comparing the result of the intervened group toward 
the control group (i.e. a group that is not intervened by PythonTutor) for each data 
structure material. This evaluation will be conducted based on unpaired t-test or 
Mann-Whitney U test. 

4 Result and Discussion 

4.1 General Overview of Student Laboratory Results 

The statistics of student laboratory results for each group in one semester can be 
seen in Figure 1. The horizontal axis represents lecture weeks while the vertical axis 
represents resulted score. Mean refers to the average score for submitted assignments, 
SD refers to the standard deviation of the score of submitted assignments, and n refers 
to the number of submitted assignments. All components are based on submitted 
assignments for each lecture week for that group. According to Figure 1, there are two 
findings that can be deducted. First, the students might feel some difficulties when 
they are asked to handle a big task for the first time. Such finding is deducted from 
the fact that both groups achieved the lowest mean score on the 4th week, the first 
week on that semester where the students were asked to handle a big task on laborato-
ry session. Second, the students might be able to complete a weekly task with a prom-
ising result if the students have understood the material well. Such finding is deducted 
from the fact that the result of each week varies and some of them are higher than 80 
of 100. 
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Fig. 1. The comparison of mean and standard deviation of student laboratory results. 

4.2 The Results of Evaluating PythonTutor’s Impact in General Perspectives 

In this evaluation, PythonTutor’s impact is measured by comparing the result of in-
tervened sessions toward the un-intervened ones for the same group. In other words, 
for each group, the average result for the odd weeks will be compared to the average 
result for the even weeks. Such comparison will be measured based on paired t-test 
where the result for each group can be seen in Figure 2. The horizontal axis represents 
evaluated groups while the vertical axis represents resulted score. The p-value for the 
group 1 is 0.0176, while the p-value for the group 2 is 0.0004. In general, both groups 
experienced statistically significant difference when learning data structure materials 
using PythonTutor. Such finding is deducted based on their generated p-value where 
both are lower than 0.05. 

For group 1, the use of PythonTutor is negatively correlated with student perfor-
mance regarding student grade. Such finding is deducted from the fact that the mean 
score for the intervened sessions is lower than the score for the un-intervened ones. 
We would argue that such negative correlation is caused by the fact that most students 
on the group 1 had never used the tool before they took BDS course [20]. Therefore, 
they might feel that such tool mitigated them for completing their task, considering 
that PythonTutor UI is not intuitive enough for students [20], [21]. 

For group 2, the use of PythonTutor is positively correlated with student perfor-
mance regarding student grade. Such finding is deducted from the fact that the mean 
score for the intervened sessions is higher than the score for the un-intervened ones. 
We would argue that such positive correlation is caused by the fact that most students 
from group 2 had used the tool before they took BDS course [20]. They might have 
been adapted to such tool, resulting in a positive impact regarding the use of Python-
Tutor. This finding is supported by p-value which is less than 0.01. 
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Fig. 2. The comparison of mean and standard deviation of paired tests. 

4.3 The Results of Evaluating PythonTutor’s Impact in Lecture Week 
Perspective 

In this evaluation, PythonTutor’s impact is measured by comparing the result of 
the intervened group toward the control group per lecture week. Such comparison will 
be measured based on unpaired tests. If scores involved in such comparison are nor-
mally distributed, an unpaired t-test will be selected as our evaluation metric. Other-
wise, Mann-Whitney U (MWU) test will be used. The result of this evaluation can be 
seen in Table 2. Improvements for each week is generated by subtracting mean score 
from the intervened group with the mean score from the control group. Figure 3 
shows the improvement of each lecture week of unpaired tests. Horizontal axis refers 
to lecture weeks while vertical axis refers to resulted improvement degree. From 14 
weeks, only 2 weeks (bolded in Table 2) show that PythonTutor affects student per-
formance significantly (p-value < 0.05). These weeks are the 1st and 12th week. 

On the one hand, the 1st week statistically generates 2.44 mean reduction. Hence, it 
can be stated that the use of PythonTutor negatively affects student performance for 
completing laboratory task on that week. This finding contradicts the result proposed 
in [21] which stated that most students from group 2 (a group which acted as the in-
tervened group on the 1st week) felt that the use of PythonTutor affected the most on 
that week. When discovered further, sometimes, it is natural that such contradiction 
exists, considering that student perspective and the actual result might not always be 
in-sync to each other.  

On the other hand, the 12th week statistically generates 8.86 mean improvements. 
Hence, it can be stated that the use of PythonTutor positively affects student perfor-
mance for completing laboratory task on that week. When discovered further, such 
finding is natural since a double-pointer linked list is a simple expansion of the stand-
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ard linked list, a data structure that had been learned on several previous weeks be-
forehand. We would argue that, at that time, the students from group 1 (a group which 
acted as the intervened group on the 12th week) had been adapted to the visual repre-
sentation of standard linked list on PythonTutor, resulting significant improvement in 
terms of student grade.  

Table 2.  Evaluation Result of Unpaired Tests  

Lecture Week 
Evaluation Metric 

p-value 
Unpaired t-test MWU test

1st  " 0.002 
2nd "  0.076 
3rd  " 0.132 
4th "  0.955 
5th "  0.174 
6th "  0.504 
7th  " 0.115 
8th  " 0.323 
9th "  0.177 

10th  " 0.139 
11th  " 0.850 
12th " 0.024
13th  " 0.102 
14th  " 0.058 

 
Fig. 3. The improvement of each lecture week of unpaired tests. 
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For the remaining 12 weeks, the correlation between the use of PythonTutor and 
student performance is not statistically significant. When discovered further, such 
finding might be caused by the high variance of student characteristics between both 
groups. Such variance might include student background, learning style, intelligence, 
and prior knowledge. 

5 Conclusion and Future Work 

This paper presents a quasi-experimental design to evaluate the impact of Python-
Tutor for learning programming in 14-lecture-weeks laboratory sessions. Such ses-
sions were held in even semester of 2016/2017 academic year and involved 4 classes 
of Basic Data Structure (BDS) course. According to our evaluation, several findings 
can be deducted which are: 1) PythonTutor might positively affect student perfor-
mance when the students have used such tool before; 2) Sometimes, student perspec-
tive is not always in-sync with actual laboratory result; 3) the impact of PythonTutor 
might be improved when similar data representation is used consequently for several 
weeks; 4) the correlation between the use of PythonTutor and student performance 
might not be significant when the control and intervened group share completely 
different characteristics; 5) the students might feel some difficulties when they are 
asked to handle a big task for the first time; and 6) the students might be able to com-
plete a particular weekly task with a promising result if the students have understood 
the material well. 

For future work, we plan to develop a PV tool that, to some extent, is similar with 
PythonTutor but with more comprehensive features. These features are expected to 
mitigate the negative feedbacks that are reported in Karnalim & Ayub’s work and the 
results of this work. Hopefully, such tool may help students to learn programming, 
especially in our university. 
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