
Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

An Improved Adaptive CoAP  
Congestion Control Algorithm  

https://doi.org/10.3991/ijoe.v15i03.9122  

Fathia Ouakasse(*), Said Rakrak 
Cadi Ayyad University, Marrakesh, Morocco 

fathia.ouakasse@gmail.com 

Abstract—The Constrained Application Protocol (CoAP) is one of the most 
emerging messaging protocols that have successfully fulfilled the need of the 
lightweight features required to handle communication between constrained 
devices in IoT environment. However, these devices are generating a huge 
amount of messages and notifications which cause the network congestion. 
Then, the challenge addressed in this paper; consists of designing a suitable 
congestion control mechanism for CoAP that ensures a safe network operation 
while keeping the use of network resources efficiently. To do so, this paper 
presents an improved congestion control algorithm for the estimation of a 
Retransmission Time Out (RTO) value to use in each transaction based on the 
packet loss ratio and the Round-Trip Time RTT of the previous transmission. A 
comprehensive analysis and evaluation of simulated results show that the 
proposed mechanism can appropriately achieve higher performance compared 
to the basic CoAP congestion control, TCP and TCP/ Linux. 

Keywords—IoT, CoAP, congestion control, RTO, packet loss, RTT. 

1 Introduction 

Nowadays, Wireless Sensor Networks (WSN) have been widely deployed in 
several IoT application fields in order to measure, control or detect physical and 
environmental events such as pressure, humidity, temperature and pollution levels. 
Furthermore, in recent critical applications, that may require an urgent intervention, 
like healthcare, smart grid, and ambient assisted living, the challenge consists of 
getting information when an event of interest occurs in order to intervene in real-time.  

In order to cover these requirements, the publish/subscribe model [1] is designed as 
the most appropriate model. Furthermore, several protocols based on this model were 
designed to support IoT applications. One of the most important protocols is CoAP 
[2]. This is going back to the fact that CoAP is the most appropriate protocol for 
lightweight devices and constrained resources in terms of memory, energy, and 
computing. Thus, CoAP has been widely used in different application fields for 
resource-constrained networks and M2M applications ranging from smart grid [3], 
building and home automation [4] smart cities [5] to healthcare industry [6], where 
real-time updates of the patient's status were provided via CoAP. 

96 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

Although, CoAP has increasingly been used and proved its effectiveness in 
gathering data from smart sensors and controlling constrained devices, the problem of 
network congestion [7] still represents the great limitation that hinders the proper 
functioning of this protocol and causes the loss of packets. Network congestion can 
also significantly cause a performance deterioration of the network, manifesting in 
increased packet latencies, while a network may even become useless if the 
congestion collapse occurs [8]. 

Indeed, the core CoAP specification defines a basic congestion control mechanism 
which consists of the use of a back off mechanism to compute the Retransmission 
Time Out (RTO) for the next transmission. It is based on the use of a fixed RTO value 
which is doubled in each retransmission. Nevertheless, even if the core CoAP 
specification defines a basic congestion control mechanism to make it able to handle 
congestion control by itself, researches have proved that CoAP is not capable of being 
adaptive to network conditions. Actually, and as demonstrated in [9], this incapability 
is due to the fact that CoAP doesn’t take into consideration the RTT of a packet since 
the network conditions may change frequently because of the dynamic topology and 
the density of WSN nodes.  

To address all those aforementioned problems, we propose, in this paper, an 
improved adaptive congestion control algorithm that overcomes the limitation 
persisting under the use of traditional CoAP congestion algorithm. The principle of 
our improvement consists of the use of both of the loss packets’ ratio and the RTT 
value in order to estimate an appropriate RTO for the next retransmission. Simulation 
results show that our proposition outperforms compared to the basic CoAP congestion 
control, TCP and Linux RTO. 

The remainder of this paper is organized as follows: a brief description of the 
CoAP application layer protocol including reliability and the basic CoAP congestion 
control algorithm is presented as background in the second section. Then, in the third 
section, the classical TCP congestion control algorithm and TCP Linux are described. 
Some related works are discussed in the fourth section. Afterward, in the fifth section, 
the proposed improved congestion control algorithm is detailed and in the sixth 
section a comparative simulation of the proposed algorithm, Default CoAP congestion 
control, Basic RTO and Linux RTO is drawn using NS2 network simulator. Finally, a 
conclusion and some future directions are closing up our paper in the seventh section. 

2 Background 

In this section a description of CoAP protocol and the default congestion control 
are presented. 

2.1 CoAP overview 

CoAP is an application layer protocol based on Representational State Transfer 
(REST) architecture; it has been designed by the Internet Engineering Task Force 
(IETF) to support IoT with lightweight messaging for devices operating in a 

iJOE ‒ Vol. 15, No. 03, 2019 97



Paper—An Improved Adaptive CoAP Congestion Control Algorithm

constrained environment. CoAP defines two kinds of interactions between end-points; 
the client/server and the publish/subscribe interactions. The client/server model 
supports two interaction types: (i) a one-to-one interaction i.e. request/reply and (ii) a 
multi-cast interaction i.e. a client interrogating several servers using requests. And the 
publish/subscribe model called the observer model [10]; here the server plays the role 
of a publisher and the observer plays the role of a subscriber. A server can send 
messages of notifications called publications about an event interesting the observer. 
Otherwise, communication between clients and servers is afforded through 
connectionless datagrams because CoAP runs over UDP. Retries and reordering are 
implemented in the application stack.  UDP broadcasts and multicasts are also 
allowed by CoAP for addressing [11]. In addition, as in the case of TCP, to make sure 
that messages arrived without a significant communication overhead, a basic error 
checking and verification for UDP can be built [12], which makes CoAP more 
suitable for the IoT domain. An over-view architecture of the CoAP protocol is drawn 
in Figure 1. 

 
Fig. 1. An overview architecture of CoAP protocol 

Furthermore, CoAP utilizes four message types; confirmable, non-confirmable, 
reset, and acknowledgment, where two among them concern reliability messages. The 
reliability of CoAP consists of a confirmable message and a non-confirmable message 
[9]. In the case of a confirmable message, an acknowledgment message (ACK) is sent 
to the sender from the intended, else the message is retransmitted. This is just a 
confirmation that the message is received, but it doesn’t confirm that its contents were 
decoded correctly. However, a non-confirmable message is fire and forget, i.e. no 
reception confirmation [13]. 

2.2 CoAP default congestion control 

The problem of congestion happens when the traffic load offered to a network 
approaches the network capacity [14]. This phenomenon is one of the main obstacles 
that still hinder the well-functioning of many protocols and thus impacts directly the 

98 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm

efficiency of the communication. In this context, CoAP must handle the congestion 
control by itself because it is based on UDP. Unlike HTTP which is based on TCP 
where a proper end-to-end congestion control is provided. CoAP offers a basic 
congestion control in the case of Confirmable messages, which consists of the use of a 
fixed RTO [15]. Initially, the RTO value is set to a random number between a 
constant ACK TIMEOUT and a constant ACK TIMEOUT multiplied by a constant 
ACK_RANDOM_FACTOR [16]. By using an exponential back-off mechanism, 
messages that haven’t received an acknowledgment within the fixed RTO duration are 
retransmitted and subsequently, this RTO value is doubled. As a result, CoAP defines 
a constant MAX_RETRANSMIT, which specifies the maximum number of message 
retransmissions before the sender stops sending and the transmission is considered to 
have failed. In Table 1, we present the default values of parameters used in the basic 
CoAP congestion control mechanism as specified by the base CoAP specification 
[14]. Moreover, in Figure 2, the CoAP default congestion control is drawn. 

Table 1.  Default parameter values as specified in CoAP specification 

Parameter Value 
ACK TIMEOUT 2 s 
ACK RANDOM FACTOR 1.5 
MAX RETRANSMIT 4 

 
Fig. 2. The CoAP default congestion control 

Although the core CoAP specification defines a basic congestion control 
mechanism to make it able to handle congestion control by itself, default CoAP 
congestion control is significantly considered too aggressive because it is still not 
capable of adapting its behavior to network conditions [17].  So, the fact that it 
doesn’t take into account the value of previous RTT makes it difficult to determine an 
optimal RTO. Furthermore, if the value of RTO used by the basic CoAP congestion 
control is less than the actual RTT, it can lead to inaccurate retransmissions; 

iJOE ‒ Vol. 15, No. 03, 2019 99



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

inaccurate retransmissions occur in the case of delays in the confirmation of the 
request. On the other hand, if the RTO value exceeds the RTT, it can lead to 
unnecessarily long idle times before retransmitting the packet in case the request or 
confirmation packets were lost [18]. 

So, the calculation of an appropriate RTO is essential to overcome the problem of 
congestion.  

3 Congestion Control Algorithms 

In this section we describe two of the main congestion control mechanisms TCP 
based; the Classical TCP congestion control algorithm and TCP Linux. 

3.1 Classical TCP congestion control algorithm 

Unlike the basic CoAP congestion control which uses a fixed RTO, the 
computation of RTO in the classical TCP congestion control is based on the history 
variation of RTT. The specification of this algorithm is proposed by RFC 6298 [19].  
According to this specification, the calculation of the actual RTO to use in the next 
transmission is based on two variables; smoothed average of RTT (SRTT) and RTT 
variation (RTTVAR); where SRTT is used to preserve the history of RTT and 
RTTVAR keeps the history of RTT variation. Both of these parameters are constant 
and their impact factors respectively are 7/8 and 3/4.  

Initially, the RTO value is set to 1 second. After the first transmission, the first 
RTT value is received. To compute the following RTO value, SRTT is set as RTT 
received and RTTVAR is set as RTTreceived/2, the following formulas are used [16]: 

SRTT = RTT 

RTTVAR = RTT/2 

After subsequent RTT measurements are received, the following formulas are 
applied: 

 SRTT = (1 - α) * SRTT + α * RTT  (1) 

 RTTVAR = (1 - β) * RTTVAR + β * |SRTT - RTT|  (2) 

 RTO = SRTT + max (G, K*RTTVAR)  (3) 

The formula (3) is used to estimate the RTO value to be used in the following 
transmission. When the RTO timer expires, the RTO value is doubled [20]. 

According to RFC 2988 [8], the value of the constant K in (3) is 4. Furthermore in 
(1) and (2) alpha and beta are also constants and their values respectively are 1/8, 1/4. 

The mechanism of the calculation of RTTVAR and SRTT based on the RTT is 
described in Figure 3. 

100 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm

 
Fig. 3. The calculation of RTT in the classical TCP congestion control 

Moreover, the G value defines the clock granularity in seconds and according to 
experiences, finer clock granularities inferior or equal to 100 ms perform somewhat 
better than other granularity values [8]. Thus, it is recommended to choose the G 
value not greater than 100 ms [19]. At the same time, G should be at least one order of 
magnitude smaller than the RTT [21].  

3.2 Linux RTO 

Linux RTO is based on the classical TCP congestion control algorithm 
recommended in RFC 6298. However, Linux RTO adds some modifications. Indeed, 
in Linux RTO the estimation of the following RTO value is done via two 
mechanisms: (i) if the current measured RTT value is smaller than the previous RTT 
value, and in order to avoid the peaks in RTO value when the channel seems to 
improve and (ii) if constant RTT values are given after subsequent measurement, and 
in order to avoid spurious retransmissions, Linux-RTO algorithm avoids the RTO 
estimator to converge into an RTT value [22]. Since classical RTO and Linux RTO 
use the RTTs measured values to update the RTO value; we refer to them in general 
as RTT-based algorithms. 

4 Related Works 

Since the basic CoAP congestion control mechanism can hardly meet the 
requirements of many IoT applications, several approaches were proposed to improve 

iJOE ‒ Vol. 15, No. 03, 2019 101



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

the aforementioned CoAP shortcomings. The CoAP Simple Congestion 
Control/Advanced CoCoA [23] is the most important extension of CoAP that has 
been standardized by IETF. Indeed, basic CoAP doesn’t care about the network 
characteristics; it behaves the same way in any type of network. So, in order to 
optimize the CoAP congestion control abilities, CoCoA, based on TCP RTO 
estimation algorithm, uses RTT measurements to add state information about 
individual RTOs for different destination endpoints based on two mechanisms: (i) a 
strong estimator; when the packet is received on the initial transmission without any 
retransmissions and (ii) a weak estimator; when RTT value is measured after at most 
two retransmissions. Both of those mechanisms implement the same algorithm but 
have different sets of state variables.  The overall RTO estimated in the formula (6) is 
made from the estimator that made the most recent contribution using either formula 
(4) or formula (5) [21]. 

 RTOrecent = 0.25 * RTOweak + 0.75 * RTOrecent  (4) 

 RTOrecent = 0.5 * RTOstrong + 0.5 * RTOrecent (5) 

 RTOoverall = 0.5 * RTOrecent + 0.5 * RTOoverall (6)  

The fact that CoCoA uses a constant backoff factor and RTO aging mechanism 
penalize its performances. The reason why authors in [20] propose a mechanism using 
a variable backoff factor depending on the estimated RTO called CoCoA+. This 
mechanism allows avoiding neither quick retransmissions for low RTO values, which 
can lead to congestion, nor slow retransmissions for large RTO values, which take a 
long time to retransmit and can lead to unnecessary delay increase. In addition, in the 
case when the RTO value hasn’t been updated for a long time, CoCoA+ adds an 
incorporated RTO aging mechanism.  

Furthermore, in [14], the authors design a 4-state estimator scheme for CoCoA 
depending on the number of times a packet has been retransmitted. The transaction 
starts in state 1, and each time a packet is retransmitted, its state increases by one. 
Each time a packet is successfully transmitted and acknowledged within its stipulated 
time, its state decreases by one. This allows setting the backoff parameters 
accordingly.  

Nevertheless, in the presence of a high number of packet losses, subsequent 
updates of the weak RTO estimator can cause some unexpected or unpredictable 
problems [18]. Since CoAP limits the MAX_RETRANSMIT in four, a new RTTweak 
might be obtained after the second, third, fourth, or fifth transmission. Thus, the 
specification of correspondence between each transmission and its CoAP 
acknowledgment might be not possible. This mechanism may have a great impact on 
the calculation of the overall RTO. In addition, when the RTTweak is measured after 
multiple retransmissions, the new calculated RTO might increase in a considerable 
way compared to RTOinit.  

So, in the aforementioned congestion control mechanisms, the issue of setting a 
right RTO value with burst traffic is still limited because setting a correct and an 
accurate RTT of retransmitted packet is hardly obtained. In the next section, we 

102 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

propose an adaptive RTO based on packet loss and RTT to provide an improved 
congestion control mechanism that addresses these issues. 

5 The Proposed Improved CoAP Congestion Control 

In addition to the fact that the basic CoAP congestion control doesn’t use the RTT 
of previous transactions to estimate the following RTO, it also doesn’t take into 
consideration the utility of the packet loss ratio as well, to adapt its behavior to 
network conditions. 

The packet loss is defined as the number of packets which failed to reach their 
destination across a computer network. Packet loss is either caused by link-layer 
interference or network congestion and it is measured as a percentage of packets lost 
according to packets sent.  

Indeed, in IoT networks, the packet loss is considered one of the big consequences 
of the network congestion problem. Based on this fact, in this paper, we propose an 
improved congestion control algorithm based on the packet loss ratio and the RTT 
value considered in the previous transmission.  

Furthermore, in order to provide an adaptive dynamic retransmission timeout 
which can be suitable for network conditions in the IoT applications, we propose to 
update the RTO value in each retransmission according to the packet loss ratio. The 
correlation between actual and previous RTO values seems primordial to adapt the 
recent RTO value to network conditions, basically the RTT and the packet loss ratio 
which is in a frequent change. So, there is no need to aging techniques because our 
RTO is in a frequent change according to the packet loss changes and it will never 
keep a fixed value for an extended period of time. Thus, the server notifies the client 
with the packet loss ratio based on sequence numbers of received messages i.e. when 
the server receives a message, it gets a set of sequence numbers and it recognizes the 
sequence numbers missed then it calculates a packet loss percentage according to 
packets sent. In our conception, two scenarios are proposed; (i) if the packet loss ratio 
is lower than 50%, the RTO value will be updated according to formula (7) in order to 
prevent unnecessarily long idle time, otherwise, (ii) if the packet loss ratio exceeds 
50%, the RTO will be updated in order to correct the loss according to formula (8). 

In other words, when the packet loss has a low value (pl < 0.5), we conserve nearly 
the same RTO value as the previous value (RTOrecent  ≈  RTOprevious ), this is in order 
to reduce idle time (waiting time). On the other hand, when the pl increases (pl > 0.5) 
the RTO conserve as well nearly the same value as the previous value, this is in order 
to correct the loss of packets. These formulas aim to adapt the RTO calculation to 
network conditions (RTT and packet loss) by conserving nearly the same value of the 
retransmission timeout. 

Initially, like the basic CoAP specification [15], we initiate the RTO to a random 
value between ACK_TIMEOUT and ACK_TIMEOUT 
*ACK_RANDOM_FACTOR. Once the RTO is initiated, a message is sent to the 
corresponding client. Then after the reception of the message, the receiver calculates 
the RTT and the packet loss values based on the received packets and the sequence 

iJOE ‒ Vol. 15, No. 03, 2019 103



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

numbers. Afterward, the formulas (7) and (8) are used in order to calculate the 
following RTO to use in the next retransmission. 

RTOrecent = RTT * packet_loss_ratio + (1- packet_loss_ratio) * RTOprevious (7) 

RTOrecent = RTOprevious * packet_loss_ratio + (1- packet_loss_ratio) * RTT (8) 

The detailed algorithm of our proposition is drawn in Figure 4. 

 
Fig. 4. The algorithm of the proposed adaptive CoAP congestion control 

6 Simulated Results 

 In order to evaluate the performance of our proposed mechanism, we perform, in 
this section, simulations. We carry our evaluations on NS simulator in order to 
compare the performance of our proposed algorithm with the basic CoAP congestion 
control and two alternative RTO calculations; classical TCP and TCP Linux. We have 
used NS-2.34 as simulation tool. Our platform is Ubuntu Linux 14.04 X86 and our 
computer configurations are Intel I3, 2.4 GHz for the CPU, 8 GB for the RAM and 
500Gb for the Hard Drive. 

 The traffic is generated in a wireless channel. We initially estimate that 12s was 
sufficient to evaluate the performances due to the fact that the RTOinit is equal to 1s. 
For the same reasons, we opt for the use of a constant bit rate (CBR) in our generated 
traffic in order to keep the same large number of bits per a short period of time and 
avoid returning to a short number. As for the data generation rate, we have used the 
CBR default value because it reflects the case of the generation of data in a real IoT 
network. We have adopted a basic topology (point to multipoint), thus a server 
communicating with multiple clients. On the other hand, in our conception, packet 
loss is due basically to network congestion seeing that we configure our simulation 
environment so that it doesn’t contain any interference source. 

Our comparison is performed in terms of the number of dropped packets, the 
maximum RTO value and the number of successful transactions. We have run the 
simulation in total 16 times; 4 times for each protocol and in each time we changed 
the node number. We estimate that these simulations are enough because only one 

104 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

parameter (node number) changes. After running the simulation, we have extracted 
from the generated trace file the useful data via Linux line commands in order to plot 
graphs. The parameters considered in this simulation are detailed in Table 2. 

Table 2.  Simulation parameters considered in our comparison 

Parameter Value 
RTO_Init 1 s 
Nodes number 1 to 40 nodes 
Packet size 1 KB 
Link speed 1.5 Mb/s 
Link delay  10 ms 
Data generation rate 448 Kb/s 
Simulation duration 12 s 

 
Figure 5 shows the maximum RTO values presented by the proposed algorithm, 

basic CoAP, classical TCP and TCP Linux in our scenario. Both of the classical TCP 
and Linux TCP congestion control algorithms present a lower RTO and start to 
increase proportionally to the increase of nodes number. However, our proposed 
algorithm presents the lower maximum RTO and outperforms all the algorithms 
considered in this comparison, this is due to the fact that our algorithm presents a 
dynamic and controlled retransmission timeout adapted to be appropriate and suitable 
for the IoT communications particularities. The two mechanisms presented by our 
proposition effectively limit the growth of RTO values since it is the previous RTO 
that makes the higher weight in each of formula (7) and (8). On the other hand, the 
basic CoAP presents slightly high maximum RTO values. Indeed, the basic CoAP 
underperforms since it uses a fixed range of initial RTO values and does not adapt to 
the current RTT. Thus, if the real RTT is noticeably below the default RTO range, 
CoAP reacts slowly to losses, while, if the RTT lies in the RTO range or even exceeds 
it, spurious retransmissions are likely to happen. 

 
Fig. 5. Comparison of the maximum RTO values 

Figure 6 shows the percentage of dropped packets presented by each congestion 
control algorithm considered in our comparison. The clear difference in the 
percentage of dropped packets between the proposed, CoAP, classical TCP and Linux 

iJOE ‒ Vol. 15, No. 03, 2019 105



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

TCP algorithms is a result of the different RTO estimations they apply. Furthermore, 
in our proposed algorithm, the fundamental reason of dropped packets is that the 
internal buffers of the CoAP reach its limit after the RTO adaptation phase. Once the 
RTO estimation reaches a steady state, our algorithm optimizes the rate of dropped 
packets and achieves a good and steady performance. 

 
Fig. 6. Percentage of dropped packets presented by each congestion control algorithm 

considered in our comparison 

Figure 7 presents the number of successful transactions achieved by different 
algorithms considered in this paper. Our proposed algorithm shows a slight increase 
in the number of successful transactions compared to classical TCP and Linux RTO, 
but a great increase compared to the basic CoAP congestion control according to 
nodes number used in this scenario. Otherwise, CoAP congestion control presents the 
lower successful transactions number which is the result of its behavior’s insensitivity 
towards network conditions.  

Note that the relatively short duration of every single experiment of 12 s penalizes 
our proposition. If a use case involves a greater duration, its performance will 
increase. 

 
Fig. 7. The flow of successful transactions in congested network 

106 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

As expected, in Figure 8, the number of retransmissions according to nodes 
number shows that the proposed algorithm presents the lower retransmissions number 
compared to algorithms considered in this paper but start to increase slightly 
according to nodes number. This increase is explained by the fact that the proposed 
algorithm tries to cover the number of dropped packets by retransmissions since the 
estimation of the RTO for transactions is based basically on the packet loss ratio. 

 
Fig. 8. Retransmissions number of congestion control algorithms according to nodes 

number 

The flexibility and the ability to adapt its behavior to different network conditions 
make our approach apt to outperform the default CoAP congestion control mechanism 
and TCP calculation algorithms; it is able to increase the number of successful 
transactions and to reduce the network congestion. Consequently, the proposed 
congestion control algorithm can maintain high performance in almost all the 
considered scenarios. Nevertheless, basic CoAP fails to achieve good performance 
due to its lack of sensitivity to network conditions. 

7 Conclusion and Future Work 

In many critical application fields like industry process and health, the connection 
of devices must be managed to ensure the reliable data transmission. So, Internet of 
Things is now connecting different devices in our entourage through the use of WSN 
based on different protocols. One of the most appropriate protocols for lightweight 
devices and constrained resources in terms of memory, energy, and computing is 
CoAP. However, in such a network, the problem of congestion is very frequent. 
Nevertheless, CoAP offers a basic congestion control insensitive to network 
conditions using an exponential back-off mechanism that lowers its performances. 
The challenge is to design a suitable congestion control mechanism for CoAP to 
ensure a safe network operation while keeping the use of network resources efficient. 
In this direction, this paper presents an improved congestion control algorithm, 
adaptive to network condition, for the estimation of RTO value. In order to compare 

iJOE ‒ Vol. 15, No. 03, 2019 107



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

the performance of our proposed algorithm to other existing algorithms like basic 
CoAP congestion control, classical TCP, and Linux RTO, we have drawn a 
simulation under NS2 simulator. The analysis and evaluation of our simulated results 
show that the proposed mechanism can appropriately achieve higher performance 
compared to the algorithms considered in this paper. Future directions will consist of 
applying the idea of the paper in a mobile environment; an environment where nodes 
are able to move and change their positions frequently, in order to evaluate its 
performance in such environment. 

8 References 

[1] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M. (2003). The many faces of 
publish/subscribe. ACM Computing Survey. 35: 114–131. https://doi.org/10.1 
145/857076.857078 

[2] Shelby, Z., Hartke, H., Bormann, C. (2013). Constrained Application Protocol (CoAP) 
drafietf core coap 18. RFC 7252, Ver. 17, 18. 

[3] In-Jae, S., Doo-Seop, E., Byung-Kwen, S. (2015). The CoAP-based M2M gateway 
fordistribution automation system using DNP3.0 in smart grid environment. IEEE 
International  Conference on Smart Grid Communications (SmartGridComm), Miami, 
Florida.  

[4] Bergmann, O., Hillmann, K.T., Gerdes, S.A. (2012). CoAP-gateway for smart homes. 
IEEE International Conference on Computing, Networking and Communications (ICNC), 
Maui, Hawaii, pp. 446-450. https://doi.org/10.1109/ICCNC.2012.6167461 

[5] Krimmling, J., Peter, S. (2014). Integration and evaluation of intrusion detection for CoAP 
in smart city applications. IEEE Conference on Communications and Network Security 
(CNS), San Francisco, CA, USA, pp. 73-78. https://doi.org/10.1109/CNS.2014.6997468 

[6] Joshi, J., Kurian, D., Bhasin, S., Mukherjee, S., Awasthi, P., Sharma, S., Mittal, S. (2016). 
Health Monitoring Using Wearable Sensor and Cloud Computing. International 
Conference on Cybernetics, Robotics and Control (CRC), Hong Kong, China, pp 104 – 
108, 2016. https://doi.org/10.1109/CRC.2016.031 

[7] Yuan, H., Yugang, N., Fenghao, G. (2014). Congestion Control for Wireless Sensor 
Networks: A survey. Control and Decision Conference, Changsha, China, pp. 4853-4858. 
https://doi.org/10.1109/CCDC.2014.6853042 

[8] Paxson, V., Allman, M. (2000). Computing TCP's Retransmission Timer. RFC 2988. 
https://doi.org/10.17487/rfc2988 

[9] Davis, E.G., Calveras, A., Demirkol, I. (2013). Improving Packet Delivery Performance 
of Publish/Subscribe Protocols in Wireless Sensor Networks. Journal of sensors, 13: 648-
680. https://doi.org/10.3390/s130100648 

[10] Hartke, K. (2012). Observing Resources in CoAP Draft-Ietf-Core-Observe-06. RFC 7641, 
Ver. 06. 

[11] Jaffey, T. (2014). MQTT and CoAP, IoT Protocols. www.eclipse.org/community/e 
clipse_newsletter/2014/february/article2.php. (Accessed 20 Jan. 2018).  

[12] Masek, P., Hosek, J., Zeman, K., Kröpfl, F. (2016). Implementation of True IoT Vision: 
Survey on Enabling Protocols and Hands-On Experience. International Journal of 
Distributed Sensor Networks, Article ID 8160282, 1-18. https://doi.org/10.11 
55/2016/8160282 

108 http://www.i-joe.org



Paper—An Improved Adaptive CoAP Congestion Control Algorithm 

[13] Chen, X. (2014). Constrained Application Protocol for Internet of Things. 
http://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/index.html. (Accessed 03 June 2018). 

[14] Bhalerao, R., Subramanian, S.S., Pasquale, J. (2016). An Analysis and Improvement of 
Congestion Control in the CoAP Internet-of-Things Protocol. Annual Consumer 
Communications & Networking Conference (CCNC), Las Vegas, USA, pp. 889 – 894. 
https://doi.org/10.1109/CCNC.2016.7444906 

[15] Betzler, A., Gomez, C., Demirkol, I., Paradells, J. (2013). Congestion Control in Reliable 
CoAP Communication. 16th ACM international conference on Modeling, analysis & 
simulation of wireless and mobile systems MSWiM, Barcelona, Spain, pp. 365- 372. 
https://doi.org/10.1145/2507924.2507954 

[16] Balandina, E., Koucheryavy, Y., Gurtov, A. (2013). Computing the Retransmission 
Timeout in CoAP. The 13th International Conference on Next Generation Wired/Wireless 
Networking, NEW2AN, St. Petersburg, Russia, pp. 352-362. https://doi.org/10.1007/978-
3-642-40316-3_31 

[17] Betzler, A., Gomez, C., Demirkol, I., Kovatsch, M. (2014). Congestion Control for CoAP 
cloud services. SOCNE conference, Barcelona, Spain, https://doi.org/10.110 
9/ETFA.2014.7005340 

[18] Betzler, A., Gomez, C., Demirkol, I., Paradells, J. (2015). CoCoA+: An advanced 
congestion control mechanism for CoAP. Ad Hoc Networks, Vol. 33, pp. 126 – 139. 
https://doi.org/10.1016/j.adhoc.2015.04.007 

[19] Paxson, V., Allman, M., Chu, J., Sargent, M. (2011). Computing TCP's Retransmission 
Timer. RFC 6298. https://doi.org/10.17487/rfc6298 

[20] Järvinen, I., Daniel, L., Kojo, M. (2015). Experimental Evaluation of Alternative 
Congestion Control Algorithms for Constrained Application Protocol (CoAP).  2nd World 
Forum on Internet of Things (WF-IoT), Milan, Italy, pp. 453 – 458. 
https://doi.org/10.1109/WF-IoT.2015.7389097 

[21] Bormann, C., Betzler, A., Gomez, C., Demirkol, I. (2016). CoAP Simple Congestion 
Control/Advanced, draft bormann-core-cocoa-00. Ver. draft-bormann-core-cocoa. 

[22] Sarolahti, P., Kuznetsov, A. (2002). Congestion Control in Linux TCP. Proceedings 
FREENIX Track: 2002 USENIX Annual Technical Conference, Berkeley, CA, pp. 49–62. 

[23] Betzler, A., Gomez, C., Demirkol, I., Paradells, J. (2016). CoAP Congestion Control for 
the Internet of Things. IEEE Communications Magazine, Vol. 54, Issue: 7, pp. 154 – 160. 
https://doi.org/10.1109/MCOM.2016.7509394 

9 Authors 

Fathia Ouakasse (corresponding author) MS degree in Telecommunications and 
Computer Sciences from the National Institute of Posts and Telecommunications, 
Rabat (Morocco). PhD student in the Laboratory of Applied Mathematics and 
Computer Science, Faculty of Science and Techniques, Cadi Ayyad University, 
Marrakesh, Morocco. (fathia.ouakasse@gmail.com). 

Said Rakrak Professor and researcher in the Laboratory of Applied Mathematics 
and Computer Science, Faculty of Science and Techniques, Cadi Ayyad University, 
Marrakesh, Morocco. 

Article submitted 30 June 2018. Resubmitted 14 September and 23 November 2018. Final acceptance 
23 November 20187. Final version published as submitted by the authors. 

iJOE ‒ Vol. 15, No. 03, 2019 109


