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Abstract—The paper presents a virtual environment for 
simulation and modeling a single-link flexible robotic ma-
nipulator. Simulation algorithm is based on the finite differ-
ence method where the systems governing dynamic equation 
is discretized and implemented. Intelligent modeling tech-
niques are developed using neural network and genetic al-
gorithm based techniques. All these have been developed 
and realized within a virtual environment using the Matlab, 
Simulink, and associated toolboxes. An interactive user 
friendly graphical user interface has also been presented. 
This environment has proven to be a valuable educational 
tool for understanding the behavior of flexible manipulator 
systems and can also be used as a computer aided teaching 
facility and a testbed for controller designs. 

Index Terms—Intelligent systems, flexible robot manipula-
tor, system modeling, virutal environment, and simulation. 

I. INTRODUCTION 
Considering the advantages of flexible robot manipula-

tors, some of the current applications of such manipula-
tors include spacecraft, remote manipulation, and radio-
active material handling in nuclear power plants [1]. 
However, due to their flexible nature, induced vibrations 
appear in the system during and after a positioning mo-
tion [2-3]. This restricts their widespread use in industry. 
A considerable amount of research work has already been 
carried out on the vibration control of flexible robot ma-
nipulators. However, a generic solution to the problem is 
yet to be obtained [4-5]. 

To formulate and implement an effective control strat-
egy for efficient vibration suppression of the system, it is 
essential to develop a mathematical model for the system 
that accounts for the interactions with actuators and pay-
load [6]. Such a model can be constructed by solving the 
partial differential equations (PDEs) that describe the 
system. However, the computational complexity and sub-
sequent software coding involved in the process is a ma-
jor disadvantage of this technique [7]. An alternative so-
lution is to utilize intelligent techniques, such as neural 
network (NN) and genetic algorithm (GA) for modeling 
of flexible robot manipulator systems [8]. The approaches 
have proven to be effective in modeling and can be used 
for test and verification of controller designs. 

As far as this authors’ knowledge there is no interac-
tive virtual environment that will allow one to study the 
behavior of flexible robot manipulators without going 
into the software coding details. To address this problem, 
the authors have developed a virtual environment that 

will allow the users to study the behavior of flexible robot 
manipulators through classical simulation and intelligent 
modeling techniques. The environment is developed by 
using Matlab, Simulink and few associated toolboxes. 

The rest of the paper is structured as follows: Section 2 
briefly describes the flexible robot manipulator system 
considered for this development. Section 3 presents the 
theoretical analysis of finite difference (FD) simulation, 
NN modeling, GA modeling, and subsequent model vali-
dation strategies. Section 4 describes the developed vir-
tual environment with some examples. The paper is con-
cluded in Section 5. 

II. THE FLEXIBLE ROBOT MANIPULATOR SYSTEM 
The flexible robotic manipulator system under consid-

eration is modeled as a pinned-free flexible beam, with a 
mass at the hub, which can bend freely in the horizontal 
plane but is stiff in vertical bending and torsion. The 
model development utilizes the Lagrange equation and 
modal expansion method [9-10]. To avoid the difficulties 
arising due to time varying length, the length of the ma-
nipulator is assumed to be constant. 

A schematic representation of the manipulator is 
shown in Figure 1, where ooOYX  and XOY  represent 
the stationary and moving co-ordinate frames, respec-
tively. The axis OX  coincides with the neutral line of the 
link in its undeformed configuration and is tangent to it at 
the clamped end in a deformed configuration. The τ  
represents the applied torque at the hub. E , I , ρ , S , 

hI  and pm  represent the Young modulus, area moment 
of inertia, mass density per unit volume, cross sectional 
area, hub inertia and payload of the manipulator, respec-
tively. )(tθ  denotes an angular displacement (hub-angle) 
of the manipulator and ),( txw  denotes an elastic deflec-
tion (deformation) of a point along the manipulator at a 
distance x  from the hub of the manipulator. In this work, 
the motion of the manipulator is confined to the ooOYX  
plane. The width of the arm is assumed to be much 
greater than its thickness, thus, allowing the manipulator 
to vibrate (be flexible) dominantly in the horizontal direc-
tion. The shear deformation and rotary inertia effects are 
also ignored. 
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Figure 1.  Schematic representation of the flexible robot manipulator 

system. 

For an angular displacement θ  and an elastic deflec-
tion u , the total (net) displacement ( )txy ,  of a point 
along the manipulator at a distance x  from the hub can 
be described as a function of both the rigid body motion 

)(tθ  and elastic deflection ( )txw ,  measured from the 
line 0OX ; 

 ( ) ( ) ( )txwtxtxy ,, += θ  (1) 

To obtain equations of motion of the manipulator, the 
associated energies have to be obtained. These include 
the kinetic, potential, and dissipated energies. To obtain 
equations of motion of the manipulator, the associated 
energies have to be obtained. These include the kinetic, 
potential, and dissipated energies. Thus, using the Hamil-
tonian’s extended method, the dynamic equation of the 
flexible robot manipulator with the associated boundary 
and initial conditions can be expressed as [2]: 
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where, E  is the Young modulus, I  is the second mo-
ment of inertia of the manipulator, and ( )tx,τ  is the ap-
plied torque. For the system under consideration, the 
torque ( )tx,τ  is applied at the hub of the manipulator, 
therefore, it can be represented as ( )t,0τ  or simply ( )tτ . 

III. SIMULATION AND INTELLIGENT MODELING 
The system modeling techniques using NN and GA re-

quire input output(s) data of a system for their model de-

velopment. To address this issue, a simulation algorithm 
has been developed to provide required input output(s) 
data for a user specified flexible robot manipulator sys-
tem. A FD algorithm has been used to develop this simu-
lation. The accuracy of the simulation outcome can be 
adjusted by changing the number of grid points along the 
length of the manipulator. 

A. FD simulation 
The PDE in equation (2) describing the flexible robot 

manipulator system is of a hyperbolic type and can be 
classified as a boundary value problem. This can be 
solved using an FD method [11]. This involves dividing 
the arm into a finite number of equal-length sections and 
developing a linear difference equation describing the 
deflection of end of each section (grid-point). Thus, using 
the FD method, a solution of the PDE in equation (2) can 
be obtained as [2]; 
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where 
ca 62 −= ; cb 4= ; ( )42 xtEIc ΔΔ= ρ and 

( )2xtDd s ΔΔ= ρ . 
Equation (5) gives the displacement of section i  of the 

manipulator at time step 1+j . It follows from this equa-
tion that, to obtain the displacements yn j− +1 1,  and yn j, +1 , 

the displacements of the fictitious points yn j+2, , yn j+1,  

and yn j+ −1 1,  are required. These fictitious displacements 
can be obtained using the boundary conditions related to 
the dynamic equation of the flexible robot manipulator. 
The discrete forms of the corresponding boundary condi-
tions, obtained in a similar manner as above are 

 0,0 =jy  (6) 
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Manipulating equation (5) using equations (6) to (9) 
yields a matrix formulation of the above as 

 CFBYAYY ++= −+ 1ji,,1, jiji  (10) 

where ki ,Y  is the displacement of grid points 
ni ,,2,1 L=  of the manipulator at time step k  

( 1 , ,1 −+= jjjk ). A and B are constant n x n matrices 
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whose entries depend on the flexible robot manipulator 
specification and the number of sections the manipulator 
is divided into, C is a constant matrix related to the time 
step tΔ  and mass per unit length of the manipulator and 
F is an n x 1 matrix related to the given input torque [2]. 
Equation (10) thus represents the dynamic equation of the 
manipulator in the presence of hub-inertia and payload, 
which can easily be implemented within the Matlab and 
Simulink environments. 

B. Intelligent modeling 
In many cases, when it is difficult to obtain a model 

structure for a system with traditional system identifica-
tion techniques, intelligent techniques are desired that can 
describe the system in the best possible way [11]. NN and 
GA are two intelligent techniques used commonly for 
system identification and modeling. The major advantage 
of utilizing GA for system identification is that GA si-
multaneously evaluates many points in the parameter 
space and converges towards the global solution [12]. 
The superiority of a GA over recursive least squares 
(RLS) algorithm in modeling a fixed-free flexible beam is 
addressed by [13]. In contrast, NN approaches for system 
identification offer many advantages over traditional 
ones, especially in terms of flexibility and hardware reali-
zation [14]. This technique is quite efficient in modeling 
non-linear systems or if the system possesses nonlineari-
ties to any degree. 

Once a model of the system is obtained, it is required 
to validate whether the model is good enough to represent 
the system. A number of such validation tests are avail-
able in the literature [14]. These are one-step ahead 
(OSA) prediction; model predicted output (MPO), and 
correlation tests. Such techniques are incorporated within 
SCEFMAS for validating developed models. Moreover, 
with NN modeling, the input-output data set is divided 
into two halves. The first half is used to train the NN and 
the output computed. The NN usually tracks the system 
output well and converges to a suitable error minimum. 
New inputs are presented to the trained neural network 
and the predicted output is observed. If the fitted model is 
correct, i.e., correct assignment of lagged inputs and out-
puts, then the network will predict well for the prediction 
set. In this case, the model will have captured the under-
lying dynamics of the system. If both the OSA and the 
MPO of a fitted model are good over the estimation and 
prediction data sets, then most likely the model is unbi-
ased. 

NN modeling: Various modeling techniques can be 
used with neural networks to identify a non-linear dy-
namical system. These include state-output model, recur-
rent state model, and non-linear autoregressive moving 
average process with exogeneous (NARMAX) input 
model. However, from the literature, it has been estab-
lished that if the plant’s input and output data are avail-
able, the NARMAX model is a suitable choice, for mod-
eling systems with nonlinearities. Mathematically, the 
model is given as [15-16]: 
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Where, )(ˆ ty is the output vector determined by the 
past values of the system input vector, output vector and 
noise with maximum lags yn , un  and en , respectively, 

)(⋅f  is the system mapping constructed through multi-
layer perceptron or radial basis function neural networks 
with an appropriate learning algorithm. The model is also 
known as NARMAX equation error model. However, if 
the model is good enough to identify the system without 
incorporating the noise term or considering the noise as 
additive at the output, the model can be represented in a 
NARX form [15-17] as: 
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The system is shown in Figure 2. 
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Figure 2.  NARX model identification with MLP/RBF neural net-

works. 

GA modeling: With the GA modelling, an initial 
population of potential solutions is created in the first 
step. In the second step, the performance of each member 
of the population is assessed through an objective func-
tion imposed by the problem. This establishes the basis 
for selection of pairs of individuals that will be mated 
together during reproduction. For reproduction, each in-
dividual is assigned a fitness value derived from its raw 
performance measure, given by the objective function 
[18]. 

In the manipulation phase, genetic operators such as 
crossover and mutation are used to produce a new popu-
lation of individuals (offspring) by manipulating the ge-
netic information, usually called genes, possessed by the 
members (parents) of the current population. In this way, 
the average performance of individuals in a population is 
expected to increase, as good individuals are preserved 
and breed with one another and the less fit individuals die 
out. The GA is terminated when some criteria are satis-
fied, e.g., a certain number of generations completed or 
when a particular point in the search space is reached. 

For parametric identification of the manipulator with 
GA, randomly selected parameters are optimised for dif-
ferent arbitrarily chosen order to fit to the system by ap-
plying the working mechanism of GA as described above. 
The fitness function utilised is the sum-squared error be-
tween the actual output, )(ny , of the system and the pre-
dicted output, )(ˆ ny , produced from the input to the sys-
tem and the optimised parameters: 
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Where, n  is the number of input/output samples. With 
the fitness function given above, the global search tech-
nique of the GA is utilized to obtain the best set of pa-
rameters among all the attempted orders for the system. 
The output of the system is thus simulated using the best 
sets of parameters and the system input. 

Model validation: It is important to devise an effective 
model validation process once a model has been devel-
oped. There are various methods of validating a model, 
such as: one step ahead (OSA) prediction, model pre-
dicted output (MPO), and correlation tests. Both the MPO 
and correlation tests are implemented for this virtual en-
vironment. The MPO method can be expressed as: 

 ))(ˆ ...., ),1(ˆ ),( ...., ),1( ),(()(ˆ yu ntytyntututufty −−−−= (14) 

and the deterministic error or deterministic residual is 

 )(ˆ)()( tytyt p −=ε  (15) 

If only lagged inputs are used to assign network input 
nodes, then  

 )(ˆ)(ˆ tyty d=  (16) 

The implication that the fitted model behaves well for 
the MPO does not necessarily imply that the model is 
unbiased. The prediction over a different set of data often 
reveals that the model could be significantly biased. One 
way to overcome this problem is by splitting the data set 
into two sets, an estimation set and a test set (prediction 
set). A section of the data is used for training the network 
and the remaining portion of the data for validating and 
testing the network. 

A more convincing method of model validation is to 
use correlation tests. If a model of a system is adequate, 
then the residuals or prediction errors ε( )t  should be 
unpredictable from all linear and non-linear combinations 
of past inputs and outputs. The derivation of simple tests, 
which can detect these conditions, is complex, but it can 
be shown that the following conditions should hold [19]. 

 

)()]()([)( τδετετφ εε =−= ttE  

τεττφ ε ∀=−=       0)]()([)( ttuEu  

τεττφ
ε

∀=−−=           0)]())()([()( 22
2 ttutuEu … (17) 

τεττφ
ε

∀=−−=         0)]())()([()( 222
22 ttutuEu   

0         0)]1()1()([)()( ≥=−−−−= τττεετφ εε tuttEu   

where )(τφ εu  indicates the cross-correlation function 
between )(tu  and )(tε , )1()1()( ++= tuttu εε , )(τδ  = 
an impulse function. 

Ideally the model validity tests should detect all the de-
ficiencies in network performance, including bias due to 
internal noise. The cause of the bias will however be dif-
ferent for different assignments of network input nodes. 

Consequently, the full five tests defined by equation (11) 
should be satisfied if u(.)'s and y(.)'s are used as network 
input nodes. In practice normalized correlations are com-
puted. The sampled correlation function between two 
sequences )(1 tψ  and )(2 tψ  is given by, 
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Normalization ensures that all the correlation functions 

lie in the range 1)(1
21

≤≤−
∧

τφ ψψ , irrespective of the signal 
strengths. The correlations will never be exactly zero for 
all lags, and the 95% confidence bands defined as 

N/96.1  are used to indicate if the estimated correla-
tions are significant or not, where N is the data length. 
Therefore, if the correlation functions are within the con-
fidence intervals, the model is regarded as adequate. 

IV. THE VIRTUAL ENVIRONMENT 
The development is composed of two main compo-

nents, one is the Matlab (and associated toolboxes) driven 
computing part and the other is the Guide driven front 
panel known as GUI [20-22]. 

 
Figure 3.  A flowchart of the environment. 

The user provides the system specification through a 
GUI that is subsequently passed to the Matlab for compu-
tation. The computation outcomes are then passed to 
other GUIs for presentation of the results. A flowchart 
representing the environments’ structure is shown in Fig-
ure 3. 

There are three main parts of the computing compo-
nent: a) FD simulation; b) NN modeling and validation; 
and c) GA modeling and validation. As the name implies 
the FD simulation part provides the computation for FD 
simulation of a flexible robot manipulator system. While 
the NN modeling and validation and GA modeling and 
validation parts provide computation for NN and GA 
modeling and subsequent model validation, respectively. 
The training data used for NN and GA modeling proc-
esses are obtained from an open-loop FD simulation, us-
ing random or composite PRBS torque inputs. 

The GUI component has six parts: a) Initial GUI; b) 
Results GUI; c ) NN  modeling GUI; d)  GA modeling  
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Figure 4.  Flowchart for the FD simulation implementation. 

GUI; e) NN model validation GUI; and f) GA model 
validation GUI. Initial GUI is the home of the 
SCEFMAS and is used to specify a desired flexible robot 
manipulator, FD simulation parameters, nature of excita-
tion input, and direct the users towards a desired intelli-
gent modeling technique. Results GUI is used to display 
the FD simulation input and output both in time and fre-
quency domains along with a three dimensional display 
of the system movement. The NN modeling GUI allows 
the users to provide the NN modeling structure and also 
guides them through the NN modeling process. The GA 
modeling GUI allows the users to pass the GA modeling 
parameters and also guides them through the GA model-
ing process. NN and GA model validation GUIs are 
used to present the validation graphs after NN and GA 
modeling, respectively. 

A. The FD simulation and verification 
The FD simulation is one of the main parts of the envi-

ronment. This provides an open-loop simulation of a 
specified flexible robot manipulator system.  

The output data generated through this simulation 
process along with the excitation inputs are stored and 
subsequently used for NN and GA modeling. The input 
types, which have been provided within the environment, 
are the random and composite PRBS. The implementa-
tion flowchart for the FD simulation is shown in Figure 4. 

Within the Initial GUI a user provides the desired sys-
tem specification, simulation parameters, and input types 
(Figure 5). The system specification consists of: Manipu-
lator Specifications, Material Properties, and Simulation 
Parameters. Manipulator specifications involve the 
length, thickness, and width of the manipulator along 
with the hub inertia and payload. While the material 
properties constitute a damping factor, Young’s modulus, 
and mass density per volume. Finally, the total simulation 
time, number of segments, and stability factor for the FD 
algorithm constitute the simulation parameters. At the 
bottom of the option selection box, there are two radio 
buttons, which can be used to select excitation input of 
the manipulator. The inputs are Random input and Com-
posite PRBS input. Only these kinds of inputs provide 
sufficient excitation for all the modes associated with a 
flexible robot manipulator system within the frequency 
range of excitation. After providing all the information 
within the initial GUI, one can click on the FD simulation 
button within the GUI. This will bring up a pre-developed 
Simulink model of the flexible robot manipulator system 
connected in an open-loop manner. 

 
Figure 5.  Initial GUI for the SCEFMAS environment. 

 
Figure 6.  A Simulink model of a flexible robotic manipulator con-

nected in an open-loop manner. 

The model consists of a FD arm in SS block, 
which implements the FD algorithm for the flexible robot 
manipulator in state-space form. The composite PRBS 
torque input is provided from the Matlab workspace 
through the Open_loop_input block. Along with the 
FD arm in SS block, this torque input is also passed 
to the Auxiliary and yin blocks. The Auxiliary 
block produces data for 3D displacement of the manipu-
lator, while the yin block passes the input torque values 
to the Matlab workspace for further analysis. The output 
of the FD arm in SS block contains the displacement, 
velocity, and acceleration data for the hub point and end 
point of the flexible robot manipulator. These data are 
passed to the Matlab workspace through the Mux and 
yout block. A simulation run of the Simulink model will 
produce outputs and will be passed to the Matlab work-
space along with excitation input data. After the comple-
tion of the simulation run, a new button will appear 
within the Initial GUI, next to the FD Simulation but-
ton. This button is called the Results button (Figure 5). 
A click on this button will open the Results GUI that can 
be used to display the input and all the outputs produced 
through this simulation process (Figure 7). 

The left hand side of the Results GUI includes option 
buttons, the top right part contains time domain and fre-
quency domain result windows fo r the  selected input or  

8 http://www.i-joe.org
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Figure 7.  Displaying the results obtained from FD Simulation 

output parameter, bottom middle window is for display-
ing a 3D plot of the complete motion of the manipulator 
for a given simulation run. The drop down menus at the 
bottom right side can be used to choose properties of the 
3D plot. After viewing the result, the user can choose to 
return to the Initial GUI by clicking on the New Simu-
lation button or may exit the environment by clicking 
on the Quit button within the Results GUI (Figure 7). 

B. B. NN modeling and validation 
The NN Modeling GUI is used to carry out the NN 

modeling of a flexible robot manipulator system. The 
implementation flowchart for the NN modeling and sub-
sequent model validation is shown in Figure 8. 

This NN Modeling GUI can be invoked by clicking on 
the NN Modeling button within the Initial GUI (Fig-
ure 9). The user can choose three, four, or five layers of 
neurons. The types of neurons along with the number of 
neurons in each layer can also be selected. For this spe-
cific case, a three layer structure was chosen with 5 neu-
rons in each of the inside layers. 

 
Figure 8.  Flowchart for NN modeling strategy. 

 
Figure 9.  The GUI used for neural network modeling. 

 
Figure 10.  NN modeling GUI at the end of a simulation run. 

After specifying the desired NN structure, the user can 
use the available input-output data set from a previous 
run or generate a new set of training data by clicking on 
the Generate Data Set button (Figure 9). This will 
open a Simulink model with open-loop input as shown in 
Figure 6. A subsequent run of the open-loop FD simula-
tion model will produce the input-output data necessary 
for the NN training. 

After having training data, the user needs to click on 
the Train Network button within the NN Modeling 
GUI. This will start the NN training process (Figure 10). 
The progress through the training can be monitored 
through the graph window shown on the left hand side of 
the GUI. The graph will plot the sum-squared error. At 
the completion of the training process, a message Simu-
lation Done will appear within the NN Modeling 
GUI. This will be followed by the appearance of another 
button called the Model Validation button. 

The Model Validation button will allow the users 
to examine the quality of the developed NN model by 
observing all the three model outputs (input to hub angle, 
input to hub velocity, and input to end-point accelera-
tion). The model validation process involves the MPO 
and correlation tests that are presented through the NN 
Model Validation GUI. The GUI with MPO validation 
plots for a hub angle model in the time and frequency 
domains are shown in Figure 11. 
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Figure 11.  Time and frequency domain validation plots for a developed 

NN model. 

The left hand side of the GUI provides all the model 
validation option buttons. The plots within the GUI show 
a comparison between the actual and model outputs for 
input to hub angle model. The top left corner graphical 
window shows the normalized actual and predicted out-
puts, while the top right corner graphical window shows 
the error between the actual (from FD simulation) and 
NN model output. The bottom graph window compares 
the actual and predicted outputs in the frequency domain. 
All the graphs show close matches between the real and 
model predicted outputs. The performance of models 
from the input to the remaining two outputs can be dis-
played by clicking on the appropriate button. In addition 
to the MPO validation plots, one can obtain correlation 
test plots for each of the three model outputs. The hub-
angle validation plots with correlation tests are shown in 
Figure 12. The auto-correlation and cross-correlation 
graphs show close proximity between the real output and 
predicted output obtained from the NN model. The user 
can click on the Quit button to return to the Initial GUI 
and start simulation all over again with a different set of 
system parameters. 

C. GA modeling and validation 
This section describes the GA modeling and model 

validation process. The user will have the choice of speci-
fying GA model parameters, such as number of individu-
als, maximum number of generations, generation gap, 
binary precision, and the order of the GA model. 

Similar to the NN modeling, the input and outputs 
from a FD simulation model will be used as a reference 
for the model development process. A flowchart describ-
ing the GA modeling steps is shown in Figure 13. The 
quality of the developed model can be verified both in 
time and frequency domains along with suitable correla-
tion tests. 

The GA Modeling GUI is used to carry out the GA 
modeling of a flexible robot manipulator system (Figure 
14). This GUI can be invoked by clicking on the GA 
Modeling button within the Initial GUI (Figure 5). The 
left hand side of the GUI is provided with sliders, where a 
user can set the GA modeling parameters. These are 
Number of individuals, Maximum number of generations, 
Generation gap, Binary precision, and Order of GA 
model. The top right corner of the GUI provides a drop 

 
Figure 12.  Validation plots for a developed hub angle model through 

correlation tests. 

 
Figure 13.  Flowchart for GA modeling process. 

down menu to choose a model type, such as input to Hub 
Angle, input to Hub Velocity, and input to End-point Ac-
celeration. After entering all the model parameters and 
model types, the user can generate training data by click-
ing on the Generate Data button (one of the right 
bottom buttons) or can use the previously generated 
simulation data available within the system. The user can 
proceed with the GA modeling by clicking on the GA 
Modeling button within the GUI. The progression 
through the GA modeling along with the fitness perform-
ance will be displayed in the figure window at the middle 
of the GUI (Figure 14). 

After the completion of the modeling process, the 
Validation Plots button will be activated (bottom 
right corner of the GUI). The user can click on this button 
to observe the performance of the developed GA model 
through GA Validation GUI (Figure 15). The left hand 
side of the GUI is provided with buttons for choosing 
model types. The model validation outputs are displayed 
through four figure windows. The top two figure win-
dows are for comparing the magnitudes of actual and 
predicted outputs. The bottom right window shows the 
comparison between actual and predicted outputs in the 
frequency domain. The bottom left window shows the 
sum-squared error for each generation. All the validation 
plots show a close match between the real data and the 
output produced by the develop GA model. At the end of 
the GA model validation process, the user can return to 
the Initial GUI for further modeling exercises. 

10 http://www.i-joe.org



A VIRTUAL ENVIRONMENT FOR STUDYING FLEXIBLE ROBOT MANIPULATORS 

 

 
Figure 14.  The GUI used for GA modelling process. 

 
Figure 15.  GA modeling validation GUI. 

V. CONCLUSION AND DISCUSSION 
The FD based simulation of a single-link flexible ro-

botic manipulator is the backbone of the environment. 
The user can specify a desired flexible robot manipulator 
system and observe the behavior of the system (both in 
time and frequency domains) before moving into the in-
telligent modeling process. As a part of intelligent model-
ing techniques, NN and GA models have been developed 
and realized using the Matlab, Simulink, Guide, and other 
associated toolboxes. Results of various modeling tech-
niques have been validated through various tests, includ-
ing input/output mapping, training and test validation, 
and correlation tests. The interactive GUIs allow the user 
to choose a model structure and monitor the developed 
model performance without going into the programming 
details. Moreover, a data analysis provision has been 
made within the package to enable users to analyze data 
obtained from a test run. This makes the environment 
more user-friendly and saves the time and effort to trans-
fer the data to another environment for analysis. 

The environment is in use with the Automatic Control 
and Systems Engineering Department of The University 
of Sheffield (UK). This package is used as a supporting 
tool to deliver a module of a M.Sc. program within the 
department. The virtual environment enables the students 
to understand the behavior of a flexible robot manipulator 
system and also the effect of parameter variations. The 
learning process could be much more difficult without 
this package. In addition to this, students can test the ef-

fectiveness of their controller designs without spending 
much time on system modeling. The addition of these 
new features will enhance the learning outcomes from 
this environment. 

The NN and GA modeling features can easily be ex-
tended to the development of intelligent controllers to 
investigate various aspects of active vibration control in 
flexible robot manipulator systems. With the advent of 
Internet technology and the Matlab web server, the pack-
age can be further developed to be used as a distance 
learning facility. 
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