
Paper—IFVM Bridge: A Model Driven IFML execution

IFVM Bridge: A Model Driven IFML Execution
https://doi.org/10.3991/ijoe.v15i04.9707

Sara Gotti(*), Samir Mbarki
Ibn Tofail University, Kenitra, Morocco
gotti.sara1990@gmail.com

Abstract—Graphical user interfaces (GUIs) present a powerful part of soft-
ware systems that allows a simplified assimilation and manipulation by users
throw visual objects such as text, image and button. however, with the increasing
complexity of GUIs and the diversity of their interaction mode required by users
to access information anywhere and anytime, the need for designing efficient and
more adaptive user interfaces has become a necessity. Therefore, UIs researchers
have attempted to address these issues by designing user interfaces at a high level
of abstraction to separate GUI’s specification from its implementation. Besides,
the OMG (Object Management Group) adopted the Interaction Flow Modeling
Language (IFML) [1] as a standard in March 2013 for this purpose. In this paper,
we present a new model driven development approach to efficiently execute the
abstract representation of software’s front-end with focus on navigation between
the views. We introduce a IFML virtual machine IFVM which executes user in-
terfaces by passing from IFML models to be translated into an intermediate
bytecode representation proposed as the instruction set of IFVM virtual machine.

Keywords—Interaction Flow Modeling Language IFML, model execution,
MDA, bytecode, virtual machine, model interpretation, model compilation,
Platform Independent Model PIM, user interfaces, front end

1 Introduction

Over the last few decades, a new methodology for building systems has appeared. It
has emerged with a number of approaches driven by models as the important artifact
for guiding the software production. Furthermore, these model driven engineering
(MDE) proposals aim at increasing productivity by starting to build software systems
with abstract models and then automatically generate the software from models. Among
these proposals we cite the model driven architecture (MDA) [2]; it is the object man-
agement group’s (OMG) vision of MDE. Therefore, working with abstract models
should be helpful to control software complexity in order to follow the imposed changes
and the industry requirements related to cost and time to market. After all, high level
representation by abstract models has made maintenance of software system easier and
less expensive than the source code after the building of such system.

Besides, another trend has emerged which is computing everywhere. It relates to the
availability of products and services on a variety of technologies and platforms. So,
data can be accessed and managed anywhere through any device using multiple screens.

iJOE ‒ Vol. 15 No. 4, 2019 111

Paper—IFVM Bridge: A Model Driven IFML execution

However, it could be difficult by enterprises to ensure the success of this trend in prac-
tice since this mobility requires the development of thousands of user interfaces to ac-
cess data. In order to prevent this problem from evolving, it is needed to abstractly
represent user interfaces by platform independent models according to MDA architec-
ture to facilitate execution on different computing platforms and technologies. Accord-
ingly, OMG group has adopted a solution in March 2013 as a standard which is the
Interaction Flow Modeling Language (IFML) [1].

IFML permits the expression of content, user interaction and navigation options of
the system’s front-end without considering the implementation specific issues, as well
as the connection with persistence and business logic to complement other modeling
dimensions and to help the development process by reusing abstract models. However,
in order to increase automation in the development process, models need to be execut-
able to directly reach application binary using either a model interpretation or model
compilation [3]. Moreover, IFML has been designed with executable semantic that per-
mits a direct mapping into the application binary.

In this paper, we present a novel approach for executing IFML models. It supports
elements used to specify the general organization of the interface and even the basic
form of navigation that we call content independent navigation between view contain-
ers expressed with events. We define IFVM, a IFML virtual machine which directly
executes IFML models through a computation based on bytecode interpreter. It starts
by compiling IFML models in order to obtain the bytecode instruction set of the IFVM
and finally generates the equivalent binary via model-based technics.

The paper is structured as follows. The next section discusses related works. Section
3 introduces the user description language IFML and its executability. In section 4, we
describe the IFVM bytecode chosen as the instruction set for the IFML virtual machine,
and then we explore the general process for executing IFML within IFVM. Section 5
provides a detailed example to validate our process. Finally, we conclude the paper with
a brief summary of our key contributions and suggestions for future work.

2 Related Works

After the apparition of MDA concept, many approaches have been applied to directly
execute system conceptual models with executable semantic, without generating the
appropriate code. The authors here [3] present a comparative study on a number of
works proposed for executing UML models using the compilation or the interpretation
concept. Actually, there are many proposed solutions allowing the back-end models
execution without code generation.

Regarding the importance of software front-end, a group of MDE based proposals
have been defined for UIs generation through code generation, like for [4] that proposes
a model driven approach for generating rich internet application UIs from IFML models
chosen for abstractly design the software front-end. Another work here [5] presents an
approach that has the same target as [4] but the authors here start by combining the
ontology model that presents the logical description of UI components with IFML

112 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

model in order to obtain a good understanding of system user interfaces. Besides, an-
other proposal defines a comprehensive tool suite called WebRatio Mobile Platform for
model-driven development of mobile applications starting by extending IFML for the
mobile domain [6].

In addition to that, and specifically to generate web application UIs, the author here
[7] propose a new framework for extending IFML metamodel in the hope of generating
modern UIs.

IFML could be used not only in the model driven engineering, but also in the soft-
ware modernization, and here we cite [8], one of the researches that proposed an archi-
tecture-driven modernization-based approach to obtain knowledge of the structure and
behavior of source code by generating three independent platform combined models
(KDM, IFML and TaskModel). The models capture various aspects about tasks, presen-
tation and dialog structures and behaviors of the design knowledge, needed for the con-
struction of the future user interface (UI).

It has been shown, during this section that many works have been proposed for exe-
cuting systems back-end, and generating UIs through code generation starting with
IFML as the abstract representation of systems front-end. But no solution has been pre-
sented for directly executing user interfaces and interactions designed with abstract
models. Except in [9], we introduced a prototype of IFML virtual machine for executing
IFML models in Java virtual machine with the use of java bytecode as the instruction
set of the proposed VM. However, in this present work, we provide a new definition of
IFML virtual machine by elaboration our own bytecode instruction set as detailed be-
low.

3 Background: Conceptual Modeling of HCIs

The HCI (Human-Computer Interaction) is the discipline devoted to the design, im-
plementation and evaluation of interactive computer systems for users. It takes care of
all tools allowing a human to control, communicate and interact with an interactive
system.

After the apparition of the new trend of ubiquitous computing, user interfaces need
to be capable of adapting to their context of use while preserving usability [10] thing
that we call plasticity. In this situation, there is a need for advanced effort to cope with
platforms changes rather than wasting time to reinvent the wheel every time by devel-
oping various separate GUIs for each software application in different operating envi-
ronments. Various systems have been proposed to guarantee interoperability between
GUIs and the diverse platforms in which we cite the model-based approach. It allows
plasticity by using platform independent HCI conceptual models from which we can
derive platform specific artifacts through a model driven engineering MDE.

Conceptual modeling of HCIs presents a key allowing UIs definition in a high level
of abstraction according to the four modeling criteria [11] which are: comprehensibil-
ity, relevance, predictability and low cost, thing that overcomes constraints related to
the platform. The question that arose is how to achieve it. Hence, it’s required to use a
formal, high-level language called User Interface Description Language (UIDL) [12].

iJOE ‒ Vol. 15 No. 4, 2019 113

Paper—IFVM Bridge: A Model Driven IFML execution

A UIDL is a descriptive language used to abstractly describe GUIs without considering
implementation details. Therefore, a number of UIDLs have emerged that will serve
for describing UIs independently of any implementation. Here we are going to focus
on IFML language; since it is referred to as a UIDL; as the input artifact for the desired
virtual machine for the present work.

OMG launched IFML (Interaction Flow Modeling Language) a platform independ-
ent description language for visually expressing the content, user interaction and con-
trol behavior of the application front end. It covers the representation of different user
interfaces aspects. We cite the view structure, the view content, the events and event
transitions and finally the parameter binding with only one diagram type called inter-
action flow diagram [13].

The structure of the application view part with IFML is built by a number of view
containers which may contain other sub containers or view components that enable
content display and data entry. The event represents the user interactivity with view
containers and view components. It triggers actions that may change the state of the
user interface. The dependency between the view elements is defined through what we
call parameter bindings associated with navigation flows or data flows that describe
data transfer.

Moreover, there are so many aspects that could help understanding the IFML lan-
guage [13], we cite: the IFML language definition; there are four technical artifacts that
compose the IFML language specification [1]; and the IFML executability; that allows
the mapping between IFML constructs to any executable UI platform.

3.1 IFML Metamodel

The IFML language definition through Meta model is considered as the best method
chosen for describing the semantics of and relations between the modeling constructs
of the language. It includes abstraction, modularization, reuse and extensibility.

The IFML meta-model is divided into three packages: The Core package, the Exten-
sion package, and the Data Types package.

 The Core package contains the abstract and general concepts for building the infra-
structure of the language such as Interaction Flow Elements, Interaction Flows, and
Parameters. These defined concepts are extended by concrete concepts in the extension
package to treat more complex behaviors. The IFML Meta model incorporates the basic
data types defined in the UML Meta model into the third Data Types package. It spe-
cializes some UML Meta classes as the origin for IFML meta-classes, and presumes
that the IFML domain model is represented in UML [1].

IFML Model represents the top level Meta class that contains other model elements;
we cite the Domain Model, the Interaction Flow Model, as well as the View Point.
Interaction Flow Model offers the user’s view of the whole application, by reference to
the “Interaction Flow Model Elements” sets, which together define a wholly functional
portion of the system. The Interaction Flow Model Element is the main concept of
IFML that can describe all the front-end requirements, such as View Elements, View
Component Parts, Actions and Events, which participate in Interaction Flow connec-
tions.

114 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

3.2 IFML executability

In the hopes of improving productivity by increasing the levels of abstraction, auto-
mation, and analysis, a model driven development (MDD) approach utilizes three key
elements in the development process: models, model transformation, and Meta models.
Therefore, in order to increase the automation in the development, it is recommended
to use executable models to generate an executable code (C, C++, Ada, Java, Forth,
even VHDL) automatically from these models or directly execute them in order to gen-
erate the equivalent binary. The model execution could be considered as the next exe-
cution paradigm that substitutes models for code.

On the one hand, models could represent the execution of the application like code
programs. On the other hand, these models must be syntactically correct in term of
executability by applying verification or validation techniques. For executing models,
we need to define it complete Meta model that contains two kinds of meta-elements
[14], we cite:

Static part: structural definition of the model elements defining the static view of a
model. For the IFML diagram, it defines the concepts of View Containers, View Com-
ponents, and events.

Dynamic part: structural definition of the elements specifying the behavior (execu-
tion state) of a model. For the IFML diagram, it defines the concept of changing the
state of the view in response to triggering events.

IFML is a platform-independent language but has been designed with executability
in mind. This is obtained through model transformations and code generators to ensure
that the conceptual IFML constructs can be mapped easily into executable applications
for various platforms and devices.

User interaction, within a view, produces events that could affect the status of the
views and then execute actions that could signal another event and that are what the
execution semantics of IFML.

In fact, there are two forms of triggering events produced by a user: event in a View-
Container that affects another View Container by a Navigation Flow and an event that
affects an element inside the same View Container. A state of interface collects visible
View containers, active View Components, and events. A View Container is visible
when it respects its visibility turn according to a composition model that contains the
entire View Containers of the system. A View Component is active if its View Con-
tainer is visible and its input parameters values are available.

The IFML execution semantics describe any IFML diagram as a machine that takes
as input the interaction of the user and updates the state of the interface for the user to
continue the interaction.

4 IFVM: The IFML Virtual Machine

The IFML Virtual Machine (IFVM) is a new concept of virtual machine designed
for executing user interfaces trough a model driven development process. It enables
model-oriented development using a UI’s representation based on IFML models for the
specification and execution of system’s front end. We cover the general organization

iJOE ‒ Vol. 15 No. 4, 2019 115

Paper—IFVM Bridge: A Model Driven IFML execution

of the interface and high-level navigation caused by an event occurrence. We support a
basic form of navigation which we call content-independent navigation. “The meaning
of content-independence is that user interaction does not depend on the content of the
source and destination View Containers. In implementation terms, it is not necessary to
associate parameter values with the interaction in order to compute the content of the
target View Container.” [13].

During the process of execution, we adopt a number of technologies in order to
achieve the final goal which is the automatic execution of UIs models via what we call
IFVM virtual machine. The process considers two major concepts which are compila-
tion and interpretation. In order to take the benefit from the compilers and the interpret-
ers, many designers have mixed the compilation with the interpretation.

Generally, the implementation starts with a compiler that translates the source lan-
guage into a target universal language called bytecode, which is closer to the machine
language but it doesn’t depend to the machine, then an interpreter that takes care to run
this program in a target language. We can have compilers for different languages that
produce bytecode for the same virtual machine, and we can then run the same bytecode
programs of the source language to all the processors for which there are interpreters.
We outline, in the next section, the bytecode proposed as the instruction set of the VM
with some details, then we introduce the IFVM basic principles.

4.1 IFVM Bytecode

There are a plenty of virtual machine architectures available on the market, espe-
cially those being stack-based architectures without registers. Examples of widely
known virtual machines are Java's JVM [15], Android's Dalvik VM [16] and Python’
VM.

Generally, stack-based virtual machines architectures without registers put values
directly onto the stack. The reason behind not using registers is that each CPU design
has its own number of registers, so, a stack-based virtual machine could run on any
CPU design with a stack. This advantage makes stack VM extremely simple, powerful
and portable, since it relies on pushing and popping values on the stack. It is hardware
and operating system independent, thing that makes it possible to run the same bytecode
on multiple platforms using different interpreters, as well as a stack-oriented interpreter
is relatively easy to implement.

As mentioned before, each element from the IFML model will be expressed in a
bytecode form to be interpreted by a virtual machine in order to obtain the machine
instructions understood by a computer's processor. We propose a new definition of the
bytecode or what we call the instruction set of the present virtual machine. For that, we
opt for a stack-based architecture for conceiving the IFVM architecture. However, since
the IFML expresses the three elements composing the application front-end; the content
via view elements, user interaction and control behavior; those elements have to be
mapped to the IFVM bytecode. The source IFML model of a complex UI structure is
transformed to build the target bytecode model by mapping each individual element to
its equivalent representation that could contain several IFVM instructions. Properties
inside IFML expressions could be mapped as values pushed and popped on the stack.

116 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

After a deep analysis on a number of well-known VMs, we derive a syntax of IFVM
instruction set. It is similar to Java Bytecode syntax, since JVM relies on a stack-based
architecture. New instructions have been added to control expressions for invoking or
calling methods during the UI construction, such as instructions of type invoke that are
used for this situation after storing all the required values in the stack with push instruc-
tion. Table 1 outlines the top used instructions of IFVM bytecode. Moreover, we pro-
vide corresponding instructions for expressing content independent navigation between
view containers that could be caused after an event of type View Element Event trig-
gered. An event may be produced by a user interaction (View Element Event, On Sub-
mit Event, On Select Event), by an action when it finishes (Action Event) or by the
system (System Event). We will focus on the first type of events especially the View
Element Event. The event instruction with indication of the event type, and the navigate
instruction that specifies the target of the navigation are used for this purpose.

Table 1. IFVM instruction set

Mnemonic Stack
[Before] → [After]

Description

Push → Property push a property onto the stack
Pop Property → discard the top property on the stack
New → Object create new graphical object
Invoke [arg1, arg2] → result invoke a method and put result on the

stack
Event S → Event Object, Triggering Expression Put on the top of the stack the expression

triggering an event of type System Event
and an event object

Event A → Event Object, [param1, param2] Put on the top of the stack a set of Param-
eter Binding needed after an event of type
Action Event is triggered, and an event
object

Event V → Event Object Create an event object of type View Ele-
ment Event. There is no need of Parameter
Binding since it corresponds to content in-
dependent navigation

Event Select → Event Object, [param1, param2, Put on the top of the stack a set of Param-
eter Binding needed after an event of type
On Select Event is triggered, and an event
object

Event Submit → Event Object, [param1, param2,] Put on the top of the stack a set of Param-
eter Binding needed after an event of type
On Submit Event is triggered, and an
event object

Navigate → Target Navigation Put on the top of the stack the target of the
navigation

Store_n Object → Store an object into local variable n
Load_n → Object Load an object from local variable n

Regarding the five types of triggered events cited in table1, we will focus in this

present work only on the basic form of event which is the View Element Event. It could
be triggered after a user interaction to navigate into another View Container without
passing parameters, we talk about the content independent navigation.

iJOE ‒ Vol. 15 No. 4, 2019 117

Paper—IFVM Bridge: A Model Driven IFML execution

4.2 IFVM Execution

In the present work, we also followed the same concept of mixing the compilation
and interpretation to build the IFVM virtual machine under a model driven architecture.
The process consists of two major units: the compilation unit and the interpretation unit.
(see Figure 1)

Fig. 1. IFVM Virtual machine process

Compilation Unit: After representing the UIs through IFML models conforming to
IFML metamodel, comes the stage of the compilation, i.e. the translation to the IFVM
bytecode. According to the model driven architecture adopted, compilation is done via
a model to model transformation designed with QVTo (Query/View/Transformation)
[17]. We started by elaborating the IFVM bytecode metamodel (see Figure 2) according
to the instruction set detailed in Table 1.

The IFVM bytecode metamodel admits iroot Meta class as a root Meta class through
which we instantiate all the IFVM machine instructions. Instructions fall into seven
groups: Load and store, Arithmetic and logic, Type conversion, Object creation and
manipulation, Operand stack management, Event and navigation, Method invocation
and return.

Fig. 2. IFVM bytecode metamodel

118 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

A model to model transformation, taking IFML metamodel as input, is lunched to
generate the equivalent bytecode model according to the IFVM bytecode metamodel.
Several rules were applied in the model to model transformation algorithm. The algo-
rithm below shows an extract of it.

Input ifml : IFML
Output ibytecode : IFVMBytecode
begin
 map ifmlmodelToiroot(ifml.interactionFlowModel);
end
mapping ifmlmodelToiroot(imodel:interaction FlowModel:iroot
begin
for all w ϵ imodel.interactionFlowModelElements
 if w is window
 map windowToNew(w)
 end if
end for
end
mapping windowToNew(w:window): new
begin
 foreach p ϵ w.properties
 map propertyToPush(p)
 end for
 create store_i object //Store w into variable i
 for all e ϵ w.viewElementEvents // form of event
 map eventToeventV(e)
 map navigationFlowToNavigate(e.NavigationFlow)
 end for
 for all e ϵ w.viewElements
 if e is form or list or details
 map elementToNew(e)
 create load_i object //Load window w from i
 create invoke object //Binding w with e
 end if
 end for
end

The transformation algorithm is based on the mapping between the source and target
metamodels elements. So, the interaction flow model will be mapped to iroot element
in the bytecode model, its windows will be then transformed into machine instructions
of type New to instantiate the frame, and other instructions of type Invoke that calls the
constructor of the frame, and instructions of type Push to store the properties on the
stack. Next, we can map the rest of the View Components as we did before. Regarding
the link between the View container and the view components, it could be mapped as
machine instructions of type Load to load onto the stack the references of these latter
followed by Invoke machine instruction that calls the method responsible for making

iJOE ‒ Vol. 15 No. 4, 2019 119

Paper—IFVM Bridge: A Model Driven IFML execution

the binding. Each IFML event will be mapped to its corresponding IFVM bytecode
event instruction followed by mapping the caused NavigationFlow to Navigate instruc-
tion for expressing the target frame to be shown as detailed in the previous algorithm.

Interpretation Unit: The IFVM bytecode was chosen as being an intermediate rep-
resentation for the present virtual machine in order to gain optimization and portability.
We mean by portability, the possibility to represent the obtained bytecode in different
platform independent or dependent forms. However, to benefit from the advantages of
existent VMs; we cite Java Bytecode, Android Bytecode and so on, we decided to trans-
form the bytecode result into these VMs platform independent bytecode.

Fig. 3. Java Bytecode metamodel

As shown in Figure 1, after the execution of the compilation unit, comes the inter-
pretation step, in which we execute another model to model transformation imple-
mented by QVTo language. It admits as input the IFVM bytecode obtained from pre-
vious step, and as output the models of other bytecode forms of existing VMs.

 In this present work, we focused on the mapping into the Java bytecode model that
respects its metamodel figured in Figure 3. For that, we set up a number of transfor-
mation rules. Table 2 shows an extract of correspondence between elements from the
two metamodels.

Table 2. Mapping between IFVM bytecode instructions and JVM bytecode instructions

IFVM Bytecode Java Bytecode
push bipush
pop pop
new new
invoke Invoke Special (e.g. invoking constructor

method)
Invoke Virtual

Events Event A Event V Event
Select

Event
Submit

Invoke Virtual (the action listener method)

navigate new
store_n astore_n
load_n aload_n

120 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

The reason behind choosing the java virtual machine as our interpreter for IFVM is
because of two things: firstly, the IFVM bytecode used in the process is similar to the
JVM instruction set syntax. Secondly, is because the JVM represents an interface that
allows running the same bytecode on any platform, so, "write once, run anywhere" JVM
makes it become a reality.

After the construction of the java bytecode model, comes the stage of the interpreta-
tion by Java virtual machine. It needs, for the execution, a set of machine instructions
written in Java bytecode format. So, there is a need to translate the obtained Java
bytecode model into its equivalent bytecode format. In other words, a model to text
transformation can be launched to generate the java bytecode instruction set. We opted
for a code generation using the open-source Acceleo [18], an Eclipse implementation
of the OMG MOF2Text Transformation Language that maps model elements into text
instructions.

The generation starts by invoking the template that includes the necessary code to
be generated by the transformation. Indeed, depending on the bytecode structure repre-
sented as byte arrays, manipulating it through the Acceleo template is considered diffi-
cult and is usually performed using libraries, that’s why we thought to use the ASM
library [19] that facilitates the bytecode manipulation and analysis. So, instead of writ-
ing the bytecode structure in the Acceleo template which is difficult, we incorporate, in
the template, the program using the ASM library that generates dynamically and di-
rectly the bytecode class file.

5 Running Example

In order to validate our process of IFVM virtual machine, we applied it to execute
the UI’s representation of a Library System. The application allows user to manage a
database library by adding, listing, searching for books through user interfaces. Figure
4 illustrates the IFML model; using IFML Editor; of navigation between the toolbar
elements and the other views expressed with events.

The UI principal window contains a top-level toolbar permitting five actions: add
book, add member, list books, list members, search book. During this section, we will
focus on the action of Adding book. The triggered event causes a content independent
navigation targeting the display of Add Book form.

So, we start by elaborating the view design model of the entire system UIs through
an instance of IFML metamodel, that is made up of elements figured in Figure 2. Figure
5 shows the corresponding IFML model.

Once the model has been built, it is then the time to get it as input in the compilation
unit to be mapped into the IFVM bytecode model with a set of machine instruction.
Figure 6 illustrates the compilation unit result.

The result IFVM bytecode model will be taken, in its turn, as input of the interpre-
tation unit.

iJOE ‒ Vol. 15 No. 4, 2019 121

Paper—IFVM Bridge: A Model Driven IFML execution

Fig. 4. Navigation flows between View Components of Library System

Fig. 5. IFML model of UI library system

122 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

Fig. 6. IFVM bytecode result of compilation unit

We launch a model to model transformation to generate a model of Java bytecode
instruction set. Each view will be treated in separate java bytecode model to facilitate
then the generation of class files to be inserted in JVM virtual machine to be interpreted.
Figure 7 shows one of the generated java bytecode models that represents the Add Book
form.

Fig. 7. Java bytecode model of Add book UI

iJOE ‒ Vol. 15 No. 4, 2019 123

Paper—IFVM Bridge: A Model Driven IFML execution

After that, comes the stage of the model to text transformation in order to generate
the equivalent bytecode class file by applying ASM library instructions. Figure 8 shows
a portion of the generated ASM program that will generate the equivalent bytecode
class file for the Add Form J Internal Frame later.

Fig. 8. Extract of generated ASM program

 Finally, the resulting class files will be considered as input for interpretation by java
virtual machine. Figure 9 shows the execution result of tested system.

Fig. 9. Add Book UI result execution

124 http://www.i-joe.org

Paper—IFVM Bridge: A Model Driven IFML execution

Our contribution for automatically executing the abstract representation of UIs has
made running, building and maintenance of software UIs easier and less expansive in
comparison to the classic approach by manually developing the UIs.

6 Conclusion

In this paper we presented a new concept for executing user interfaces and interac-
tions designed with IFML OMG standard. We described a model driven development
process named IFVM. The process admits as input, within the compilation unit, the
IFML model to be mapped into IFVM bytecode model using QVTo language. Then, in
the interpretation unit, we launch another model to model transformation to generate
the other forms of well-known bytecode models, we focused on just one mapping that
generates java bytecode model. After that, we generate the bytecode class file from the
obtained java bytecode model through Acceleo language and the ASM library. Finally,
the result bytecode class file will be passed into the JVM to be interpreted.

We concentrated our treatment on just one type of navigation which is the content
independent navigation expressed by View Element Event. Future works will cover the
integration of the other forms of navigation with data transferred between windows,
and we think to combine also the back-end with the front-end representation of the
systems in order to produce a complete model driven executable system.

7 References

[1] OMG, Interaction Flow Modeling Language. Version 1.0. IFML (2015), available at
http://www.omg.org/spec/IFML/1.0/

[2] OMG, MDA. “MDA Guide Version 2.0.” ,2015.
[3] Gotti, S., & Mbarki, S. (2016, March). UML executable: a comparative study of UML com-

pilers and interpreters. In Information Technology for Organizations Development (IT4OD),
2016 International Conference on (pp. 1-5). IEEE. https://doi.org/10.
1109/IT4OD.2016.7479251

[4] Roubi, S., Erramdani, M., & Mbarki, S. (2016). A Model Driven Approach based on Inter-
action Flow Modeling Language to Generate Rich Internet Applications. International Jour-
nal of Electrical and Computer Engineering (IJECE), 6(6), 3073-3079.
https://doi.org/10.11591/ijece.v6i6.10541

[5] Laaz, N., & Mbarki, S. (2016, September). Combining Ontologies and IFML Models Re-
garding the GUIs of Rich Internet Applications. In International Conference on Artificial
Intelligence: Methodology, Systems, and Applications (pp. 226-236). Springer, Cham.
https://doi.org/10.1007/978-3-319-44748-3_22

[6] Acerbis, R., Bongio, A., Butti, S., & Brambilla, M. (2015, May). Model-driven development
of cross-platform mobile applications with WebRatio and IFML. In Proceedings of the Sec-
ond ACM International Conference on Mobile Software Engineering and Systems (pp. 170-
171). IEEE Press.

[7] Wakil, K., & Jawawi, D. N. (2017). Extensibility interaction flow modeling language meta-
models to develop new web application concerns. Kurdistan Journal of Applied Research,
2(3), 172-177. https://doi.org/10.24017/science.2017.3.23

iJOE ‒ Vol. 15 No. 4, 2019 125

Paper—IFVM Bridge: A Model Driven IFML execution

[8] Gotti, Z., & Mbarki, S. (2016). Java Swing Modernization Approach-Complete Abstract
Representation based on Static and Dynamic Analysis. In ICSOFT-EA (pp. 210-219).
https://doi.org/10.5220/0005986002100219

[9] Gotti, S., & Mbarki, S. (2016). Toward IFVM Virtual Machine: A Model Driven IFML
Interpretation. In ICSOFT-EA (pp. 220-225).

[10] Sottet, J. S., Calvary, G., & Favre, J. M. (2006). Models at runtime for sustaining user inter-
face plasticity. In Models@ run. time workshop (in conjunction with MoDELS/UML 2006
conference).

[11] Selic, B. (2003). The pragmatics of model-driven development. IEEE software, 20(5), 19-
25. https://doi.org/10.1109/MS.2003.1231146

[12] Shaer, O., Jacob, R. J., Green, M., & Luyten, K. (2008, April). User interface description
languages for next generation user interfaces. In CHI'08 Extended Abstracts on Human Fac-
tors in Computing Systems (pp. 3949-3952). ACM.

[13] Brambilla, M., & Fraternali, P. (2014). Interaction flow modeling language: Model-driven
UI engineering of web and mobile apps with IFML. Morgan Kaufmann.

[14] Cariou, E., Ballagny, C., Feugas, A., & Barbier, F. (2011, June). Contracts for model exe-
cution verification. In European Conference on Modelling Foundations and Applications
(pp. 3-18). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21470-7_2

[15] Lindholm, T., Yellin, F., Bracha, G., & Buckley, A. (2014). The Java virtual machine spec-
ification. Pearson Education.

[16] Bornstein, D. (2008, May). Dalvik vm internals. In Google I/O developer conference (Vol.
23, pp. 17-30).

[17] OMG, Q. V. T. (2008). Meta object facility (mof) 2.0 query/view/transformation specifica-
tion. Final Adopted Specification (November 2005).

[18] Acceleo. Available online at: http://www.eclipse.org/acceleo/documentation/
[19] Bruneton, E. (2007). ASM 3.0 A Java bytecode engineering library. URL: https://down-

load.forge.ow2.org/asm/asm3-guide.pdf.

8 Authors

Sara Gotti PhD Student, she got her Master Degree in software quality in 2013. She
is a researcher on studying the execution of conceptual models at MISC laboratory in
Faculty of science, Ibn Tofail University, Morocco. Her main research interests are
related to the establishment of a model compiler / interpreter,

Samir Mbarki received his B.S. degree in applied mathematics from Mohammed
V University, Morocco, 1992, and Doctorate of High Graduate Studies degrees in Com-
puter Sciences from Mohammed V University, Morocco, 1997. In 1995, he joined Ibn
Tofail University, Morocco where he is currently a Professor in Department of mathe-
matics and computer science. His research interests include software engineering,
model driven architecture and natural language processing.

Article submitted 13 October 2018. Resubmitted 17 November 2018. Final acceptance 05 January 2019.
Final version published as submitted by the authors.

126 http://www.i-joe.org

