A Hybrid Design Approach for Data Acquisition and Real Time Control of a Universal Motor Test Bench

Stamen Gadzhanov, Andrew Nafalski, Zorica Nedic

Abstract


The recent advances in technology have led to the development of a number of laboratories for motion control throughout the world. The increased Internet bandwidth allowed many of them to be used remotely by distant users. The benefit of using a motorised linear stage in the laboratory test bench is that it represents various industrial applications for precise position control. This paper presents a novel comprehensive flexible motion platform that can be a base for remote experimentations with Brushless DC (BLDC)/Permanent Magnet Synchronous motors (PMSM) and drives, single/multiple axes flexible mechanical systems with friction/backlash uncertainties, inverted pendulums, etc. A LabVIEW software environment has been utilised to gain from the advantages of the virtual instrumentation representation and data acquisition capabilities.

Full Text:

PDF



International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo