Development of a Multibody Systems Model for Investigation of the Effects of Hybrid Electric Vehicle Powertrains on Vehicle Dynamics.

Matthew Andrew Bastin, R Peter Jones

Abstract


With ever increasing numbers of Hybrid Electric Vehicles (HEV’s) being developed, come new challenges in the field of automotive engineering. Whilst there has been considerable work conducted on HEV’s from a powertrain, efficiency, and control systems perspective, very little work has been instigated in the field of how the introduction of such hybrid systems effect passive vehicle dynamics. One of the possible obstacles in the way of such studies is the multitude of powertrain architectures that are present or possible in HEV’s. This obstacle can make investigations very application specific, and leads to inefficiencies in the modelling process.
This paper discusses the development of a model constructed in Dymola in order to investigate the effects of hybrid powertrains on ride and handling. The modelling methodology is presented, along with model based testing and validation of component and the full vehicle models.
Whilst the development of the model is introduced for a specific study, it is shown that the way in which the model has been developed lends itself easily to use in other fields. It is shown that the modular construction of the model, and the physical, object orientated modelling approach facilitated by Dymola, allow varying numbers and complexities of component models to be utilised within the same basic model. Such an approach means that one base model can be utilised for differing hybrid architectures for ride, handling and drivability studies thus reducing modelling time and complexity.

Keywords


Multibody Modelling; Systems Modelling; Simulation; Dymola; Ride; Handling; Vehicle Dynamics

Full Text:

PDF



International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo