On-line Signature Verification Based on GA-SVM

Dong Huang, Jian Gao

Abstract


With the development of pen-based mobile device, on-line signature verification is gradually becoming a kind of important biometrics verification. This thesis proposes a method of verification of on-line handwritten signatures using both Support Vector Data Description (SVM) and Genetic Algorithm (GA). A 27-parameter feature set including shape and dynamic features is extracted from the on-line signatures data. The genuine signatures of each subject are treated as target data to train the SVM classifier. As a kernel based one-class classifier, SVM can accurately describe the feature distribution of the genuine signatures and detect the forgeries. To improving the performance of the authentication method, genetic algorithm (GA) is used to optimise classifier parameters and feature subset selection. Signature data form the SVC2013 database is used to carry out verification experiments. The proposed method can achieve an average Equal Error Rate (EER) of 4.93% of the skill forgery database.

Keywords


Online Signature Verification; SVM; Data Description; Genetic Algorithm; Feature Selection

Full Text:

PDF



International Journal of Online Engineering (iJOE) – eISSN: 1861-2121
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo