Multi-sensor Image Fusion Algorithm Based on Multiresolution Analysis

Zhi-guo Wang, Wei Wang, Baolin Su


To solve the fusion problem of visible and infrared images, based on image fusion algorithm such as region fusion, wavelet transform, spatial frequency, Laplasse Pyramid and principal component analysis, the quality evaluation index of image fusion was defined. Then, curve-let transform was used to replace the wavelet change to express the superiority of the curve. It integrated the intensity channel and the infrared image, and then transformed it to the original space to get the fused color image. Finally, two groups of images at different time intervals were used to carry out experiments, and the images obtained after fusion were compared with the images obtained by the first five algorithms, and the quality was evaluated. The experiment showed that the image fusion algorithm based on curve-let transform had good performance, and it can well integrate the information of visible and infrared images. It is concluded that the image fusion algorithm based on curve-let change is a feasible multi-sensor image fusion algorithm based on multi-resolution analysis. 


multiresolution, multisensory, image, fusion algorithm

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo