Classification Algorithm Based on Nodes Similarity for MANETs

Ali Choukri, Younes Hamzaoui, Mohammed Amnai, Youssef Fakhri


This article describes an algorithm of classification by similarity of nodes in a MANET (Clustering). To optimize a network performance without influencing others, we must act only on the cluster structure. Any additional calculation clutters more the system. To overcome this limitation, a strong classification method is needed. The purpose of classification algorithms is the search for an optimal partition. This optimum is obtained iteratively refining an initial pattern randomly selected by reallocating objects around mobile centers. In order to partition the nodes into clusters, we used this technique (iterative reallocation) from the well known k-means algorithm. The algorithm conception is based on the k-means method that we improved and adapted to make it suitable for mobile ad hoc networks. The algorithm is implemented on OLSR giving birth to a new routing protocol: OLSRKmeans.


MANETs; Classification; Routing; Clustering

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo